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ABSTRACT 

by 

 

John Michael Gonzales 

 

Dr. Jacimaria Batista, Examination Committee Chair 

Professor, Department of Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 

 

 

The use of cerium chloride (CeCl3) to remove fluoride and phosphate from waters 

is addressed in this study.  High concentrations of fluoride exist in groundwater 

especially in developing countries. Consumption drinking water containing high levels of 

fluoride can lead to serious cases of dental and skeletal fluorosis. Current defluoridation 

technologies are limited, especially for high levels of fluoride, and are expensive. 

Industrial wastewaters contribute to the highest fluoride contamination in the world. With 

the increasing production of electronic materials, the global fluoride concentration and 

fluoride-contaminated waters have grown tremendously. Excessive discharge of 

phosphate into the environment promotes eutrophication of lakes and rivers. The major 

sources of phosphate pollution are agricultural and urban runoff and domestic wastewater 

discharges. Cerium chloride, a newly available coagulant is expected to remove both 

fluoride and phosphate from waters A commercially available cerium chloride e (i.e. 

Sorbx-100) which is a non-hazardous rare-earth salt solution developed for faster 

coagulation and flocculation of phosphate in wastewater has been recently made 

available(Molycorp Minerals Incorporated, n.d.). The objectives of this research are to 

determine the efficiency efficacy of cerium chloride in removing fluoride and phosphate 

from waters. Batch jar testing was performed to evaluate fluoride removal under different 

conditions.  Column testing was used to test the phosphate removal efficiency of various 
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media impregnated with cerium chloride Batch tests were used to support central 

composite design (CCD) model to evaluate the impact of major parameters (e.g. fluoride 

concentration, pH, and cerium dose) on the removal of fluoride from industrial 

wastewater. In addition, batch tests were also used to investigate the interference of 

competing ions on the removal of fluoride using cerium chloride. 

The CCD model achieved an R-squared = 0.8615 and adjusted R-squared = 

0.7368. The model was deemed to be statistically significant. The results showed that the 

highest removal (> 90%) was achieved at pH of 4.75 at cerium dose of 25 mM, regardless 

fluoride concentration. The results revealed that sulfate and phosphate have a positive 

impact on fluoride removal. Bicarbonate was shown to have as a negative impact on 

fluoride removal. For an actual industrial wastewater containing fluoride and with high 

alkalinity, no fluoride removal was observed with addition of cerium chloride. The 

observed fluoride removals can be attributed to two mechanisms: direction precipitation 

of cerium fluoride, and adsorption of fluoride ions and fluoride complexes onto the 

surfaces of cerium hydroxides and/or cerium carbonate. Impregnation of various filter 

media with cerium chloride and using various techniques was proven unsuccessful for 

phosphate (PO4
-3

-P) removal. Analysis of the cerium on the column effluent samples 

showed cerium leaching out of the media. Therefore, all methods for preparing 

impregnated media were ineffective. 
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CHAPTER 1: INTRODUCTION AND OBJECTIVES 

 

 

 
This research focuses on the use of a new coagulant, cerium chloride (i.e. Sorbx- 

 

100) to remove fluoride and phosphate from waters. Cerium chloride has recently 

become commercially available in the United States, due to the mining of rare-earth ores 

in Mountain Pass, at the California/Nevada Border. Rare-earth chlorides, particularly 

cerium chloride, are one of the useful by-products of rare-earth mining. Rare-earth 

elements (REE) – commonly known as lanthanides – consist of lanthanum to lutetium 

(atomic number from 57 to 71) including yttrium (atomic number of 39). Cerium is the 

most abundant rare-earth element on earth’s crust and greater in abundance compared to 

copper or lead (Castor & Hedrick, n.d.; Bleiwas & Gambogi, 2013). 

Fluoride can be found naturally in waters or it can be added – artificial 

fluoridation for teeth health concerns. A community can be exposed to fluoride primarily 

from drinking water, food, dental products and various forms of pesticides. The greatest 

source of non-dietary requirement of fluoride is through dental products, primarily from 

toothpaste (National Research Council, 2006).Fluoride is a naturally occurring ion on the 

earth’s crust with typical groundwater concentrations ranging from 0 mg/L to 41 

mg/L(Ayoob & Gupta, 2006; Vithanage & Bhattacharya, 2015) and can go as high up to 

205 mg/L groundwater, particularly in Ethiopia(National Research Council, 2006; 

Vithanage & Bhattacharya, 2015). In recent studies, it has been found that high 

concentrations of fluoride exists in groundwater, especially in developing countries such 

as India, China, and some parts of Southeast Asia(Mohapatra et al., 2009) where the 

potential implementation of treatment technologies is limited by cost. Endemic fluorosis 
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has been devastating southern and northern India. Tanzania, Kenya, Uganda, Ethiopia, 

and parts of Africa are also greatly affected because of limited resources and treatment 

technologies (McGill, 1995). The U.S. EPA has established a drinking water MCL 

(maximum contaminant level) of 4 mg/L of fluoride in waters; in the State of California 

the MCL is 2 mg/L. With the continuing stringent contaminant goals for drinking water 

for fluoride, it is necessary to find effective treatment technologies, particularly for 

countries limited by treatment and costs. 

Industrial wastewaters contribute to the highest fluoride contamination in the 

world. With the increasing production of electronic materials, the global fluoride 

concentration and fluoride-contaminated waters have grown tremendously. The major 

contributors of fluoride contaminated wastewaters are semiconductor manufacturers, and 

industrial plants specializing in photovoltaic materials, plastics and textiles (Mohapatra et 

al., 2009). Hydrofluoric acid solutions are typically used as etchant for metal processing 

manufacturers. With the decreasing demands for hydro-fluorocarbon as etching agents, 

the demand for HF will continuously increase as well as the need for electronic materials 

(Kirschner, 2005). With the international increase of electronic materials use, the World 

Health Organization established an international maximum concentration goal of 1.5 

mg/L, primarily designed for health benefits. Therefore, in the case of industrial 

wastewater with high fluoride concentrations (e.g. 500-1,000 mg/L), it is necessary to 

find technologies that are able to remove a very high percentage of the fluoride present. 

The removal of fluoride can be accomplished by several technologies; the most 

acceptable and widely used technologies for fluoride removal include adsorption onto 

activated alumina (Feenstra et al., 2007; Tomar & Kumar, 2013; Renuka & Pushpanjali, 
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2013), ion-exchange resins(Renuka & Pushpanjali, 2013; Tomar & Kumar, 2013), 

electrochemical processes and membrane techniques including reverse osmosis, and 

electro-dialysis (Na & Park, 2010), and precipitation using aluminum salts or lime 

(Renuka & Pushpanjali, 2013; Tomar & Kumar, 2013). 

Phosphate is a well-known contaminant of waters that promote eutrophication of 

rivers and lakes. Major sources of phosphate include agriculture runoff and domestic 

wastewater treatment plant discharges (Litke, 1999). The vast majority of wastewater 

treatment plants in the U.S. are required by law to remove phosphate from their 

wastewater before it can be discharged to rivers and lakes. The amount of phosphate to be 

removed depends on the water quality standards established for the body of water where 

the treated wastewater effluent is discharged. Typically, most plants have to remove 

phosphate to 1 mg/L (Litke, 1999; Jenkins et al., 1971; Parsons & Smith, 2008). Several 

plants, however, have to remove phosphate (PO4
-3

-P) to below 1 mg/L. In Southern 

Nevada, local wastewater treatment plants are required to remove phosphate (PO4
-3

-P) 

below 0.25 mg/L before discharging to Lake Mead. 

Phosphate can be removed biologically and through chemical addition (Metcalf & 

Eddy, 2014; Jenkins et al., 1971). Enhanced biological phosphorus removal (EBPR) is 

currently practiced in many wastewater treatment plants (Parsons & Smith, 2008). It is 

less expensive and generates less sludge than chemical phosphate removal. However, 

EBPR is not very effective in colder climates where sufficient volatile fatty acids (VFAs) 

can be generated to sustain the process. On the other hand, chemical phosphate removal 

can be used widely (Greaves et al., 1999; Parsons & Smith, 2008). A drawback of 

chemical phosphate removal is the chemical cost and the large amount of sludge 
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produced and its associated disposal cost (Parsons & Smith, 2008). Notwithstanding, 

coagulation/precipitation, using various coagulants, is the most used technology for 

phosphate from wastewater. Typical coagulants used for phosphate removal are 

aluminum sulfate, ferric sulfate, ferric chloride, and lime. A phosphate removal 

efficiency of between 80 to 90 %can be achieved with chemical precipitation (Metcalf & 

Eddy, 2014; Thistleton et al., 2002; Parsons & Smith, 2008). Even in plants where EBPR 

is practiced, there is still need to use some amount of coagulant. In these plants, 

coagulants are added before filtration to add the removal of solids, which in EBPR are 

loaded with polyphosphate. Coagulants are also added to treat return streams (i.e. from 

centrifuges) where secondary phosphate release may occur (Morse et al., 1998). 

Furthermore, coagulants are also added before digestion to prevent the formation of 

struvite (MgNH4PO4∙6H2O), a scale that can for in EBPR systems that use sludge 

digestion (Parsons & Smith, 2008). 

Both fluoride and phosphate can be removed by coagulation/precipitation. For 

fluoride removal, typical coagulants used are aluminum sulfate and lime. Lime is the 

most common chemical used for fluoride removal from industrial wastewaters with 90 % 

removal efficiency. However, lime increases the total alkalinity of the wastewater. 

Fluoride removal using aluminum sulfate is independent of pH. However, optimal pH 

with lime for fluoride precipitation occurs at 6.50. Excluding coagulation method, all 

other technologies – adsorption, electrochemical process, and membrane process – 

requires pH adjustment. However, the presence of sulfate, bicarbonate, and phosphate 

decreases the effectiveness of these technologies for fluoride removal (Drouiche et al., 

2008). This research aims to investigate the effectiveness of cerium chloride precipitation 
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as a treatment technology to remove fluoride and phosphate from waters. While the 

research on fluoride focus on using coagulation/precipitation, the research on phosphate 

removal focus on impregnating media with cerium chloride for use in wastewater filters. 

The removal of phosphate from wastewater by coagulation using cerium chloride is the 

subject of the thesis of another member of our research group. 

The specific objectives of this research are: 

 

1. To investigate the removal of fluoride from industrial wastewater using 

cerium chloride as the coagulant 

2. To evaluate the removal of phosphate from wastewaters using various media 

impregnated with cerium chloride. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

 
 

2.1. Fluoride in Natural and Industrial Waters 

 
2.1.1. Occurrence of Fluoride 

 
Fluoride can be found in natural waters or as an additive compound – artificial 

fluoridation for health concerns. However, some communities are exposed to fluoride 

primarily from drinking water, food, dental products and forms of pesticides. The greatest 

source of non-dietary requirement of fluoride is through dental products, primarily from 

toothpaste. Other contamination sources of fluoride include some pharmaceuticals, and 

atmospheric contributions from pesticides manufacturers (National Research Council, 

2006). 

Fluoride (F
-
) is the ionic form of the fluorine element with a molecular weight of 

19 grams per mole. Fluoride is a naturally occurring ion on the earth’s crust, and typical 

groundwater concentrations range from 0 mg/L to 41 mg/L(Ayoob & Gupta, 2006; 

Vithanage & Bhattacharya, 2015) and can go as high up to 205 mg/L groundwater, 

particularly in Ethiopia(National Research Council, 2006; Vithanage & Bhattacharya, 

2015). 

Fluoride is typically found in soil, water and in trace amounts in plant. Fluoride 

species occur mainly as sellaite (MgF2), fluorspar (CaF2), cryollite (Na3AlF6) and 

fluoroapatite [3Ca3(PO4)2∙Ca (F,Cl2)](Mohapatra et al., 2009). Fluorspar can be found in 

sedimentary rocks and cryollite can be found from igneous rocks. Fluoride concentration 

is controlled by pH, total dissolved solids (TDS), hydroxyl and carbonate alkalinity, and 
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rock materials among other things. In the circum-neutral pH range from 6.50 to 8.50, 

fluorosilicates naturally dissociate into fluoride ion, hydrofluoric acid (HF), and silicic 

acid (Si(OH)4). Fluoride ions and fluoride compounds form a reversible reaction to and 

from hydrofluoric acid (HF), and also form complexes with aluminum (National 

Research Council, 2006).  Hydrofluoric acid (HF) is a weak acid with a pKa value of 

3.40 and that would make it strong. 

 
In recent years, the industrial production of electronic materials has contributed to 

the increase in global fluoride concentration and contamination of waters. The major 

contributors of fluoride contaminated wastewaters are semiconductor manufacturers, and 

industrial plants manufacturing hydrofluoric acid, photovoltaic materials, plastics, and 

textiles (Shen et al., 2003). These major contributors produce and discharge fluoride 

contaminated wastewaters that far exceed the maximum contaminant level (MCL) of 4 

mg/L. Table 1 enumerates the typical fluoride contaminated wastewaters and typical 

fluoride concentrations found in these waters: 



www.manaraa.com

8  

Table 1: Typical sources of fluoride in industrial wastewaters 
 

 

Type of wastewater Fluoride (mg/L) pH range Reference 
 

 

217 2.18 (Drouiche et al., 2008) 
 

 

83 6.38 (Zhang et al., 2010) 
Semiconductor 
fabrication 

 
 

  350 – 1000 - (Gurtubay et al., 2010)   

 

 
 

 

 

Steel fabrication industry 

 
 

Aluminum process 
industry 

 

 

Photovoltaic energy 

manufacturers 

 
 

Berrylium extraction 

plants 
 

 

 

 

Fluoride-contaminated wastewaters come from using hydrofluoric acid (HF) as an 

etchant or cleaning agent for semiconductors, photovoltaic plates, and for metal-plating 

or metal manufacturing industries as listed above. HF acid is also added as a chemical 

catalyst in the alkalytion process in the oil-processing. Alkalytion increases the octane 

levels in gasoline. Furthermore, the increased demand for HF acid is due to the need to 

replace hydrofluorocarbons (HCFCs) as etching solutions for the metal industry. The 

continued growth in all aspects of electronic production will show a furthering spike in 

the demand of HF acid solutions (Kirschner, 2005), and thereby increasing fluoride 

contaminated wastewater. 

743 3.5 (Huang & Liu, 1999) 

500 - 2000 - (Drouiche et al., 2008) 

5 - 35 7 
(Khatibikamal et al., 

  2010)   

40 – 65 8.8-9.3 (Gurtubay et al., 2010) 

80 – 90 - (Zhang et al., 2010) 

217 2.18 (Drouiche et al., 2008) 

1000 - (Drouiche et al., 2008) 

500 – 2000 - (Gurtubay et al., 2010) 

>1000 - (Gurtubay et al., 2010) 
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2.1.2. Health Concerns of Fluoride 

 
The Safe Drinking Water Act enacted by the U.S. Environmental Protection 

Agency (EPA) established maximum contaminant level (MCL) for various contaminants 

for public drinking-water systems. The U.S. EPA established the maximum contaminant 

level goals (MCLGs) and (MCLs) that protect people from potential of adverse health 

effects from consuming fluoride-containing waters (National Research Council, 2006). 

MCLGs are not regulated; however, MCLs are enforced based on the allowable and 

established analytical methods. The MCLG established for fluoride is 4 milligrams per 

liter (mg/L) and a secondary MCL (SMCL) of 2 mg/L.  However, for fluoride, the 

MCGL and MCL is the same. Under the U.S. Public Health Service for water 

fluoridation, an optimal range between 0.70 to 1.40 mg/L for cavities prevention and 

control enamel fluorosis. Approximately 162 million people in the United States consume 

artificially fluoridated drinking water (National Research Council, 2006). 

However, excessive ingestion of fluoride through water is a serious health hazard 

that could cause dental and skeletal fluorosis. More than 260 million people 

internationally consume more than 1 mg/L of fluoride (Jagtap et al., 2012). Fluorosis is 

classified into industrial and endemic. Industrial fluorosis is defined by prolonged 

exposure to high fluoride atmospheric concentrations through aluminum and steel 

industries. Endemic fluorosis occurs through the consumption of fluoride-contaminated 

drinking water. In recent studies, it has been found that high concentrations of fluoride 

exists in groundwater, especially in India, China, and some parts of Southeast 

Asia(Mohapatra et al., 2009). Endemic fluorosis has been devastating southern and 
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northern India, as well. Tanzania, Kenya, Uganda, Ethiopia, and parts of Africa are also 

greatly affected (McGill, 1995). 

Upon ingestion, fluoride infiltrates the bones and increases the total bone mass. 

 

Continual ingestion of fluoride produces ossification of the bones and ligaments (McGill, 

1995), bone deterioration and a severe case of osteoporosis (Mandinic et al., 2010). More 

than 99% of human bones contain fluoride (National Research Council, 2006). Table 2 

lists the fluoride concentrations corresponding to the health benefits and effects in 

drinking water. 

 

Table 2: Health effects of varying fluoride concentrations in drinking water 

Fluoride Concentration (mg/L) Health Effects 

No fluoride Limited growth 
 

 

0 to 0.5 mg/L Dental caries/cavities 
 

 

0.5 to 1.5 mg/L Tooth decay prevention 
 

 

1.5 to 4.0 Dental fluorosis 
 

 

4 to 10 mg/L Dental and skeletal fluorosis 
 

 

More than 10 mg/L Crippling fluorosis 
 

 

Adapted from (Edmunds & Smedley, 2013) 
 

 

 

 

 

In the study conducted by the National Research Council on behalf of the U.S. 

EPA, the research committee unanimously identified the risk of fluoride in public 

drinking water. The study recommended a lower MCGL (MCGL=MCL) of less than 4 

mg/L to prevent developing severe enamel and skeletal fluorosis in children (National 

Research Council, 2006). 
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2.1.3. Fluoride Removal Technologies 

 
Defluoridation, a water treatment process, reduces the fluoride level to the 

permissible concentration for drinking water (Mohapatra et al., 2009). The most 

acceptable and widely used defluoridation techniques include precipitation and 

coagulation, adsorption, and membrane techniques including reverse osmosis, and 

electro-dialysis (Na & Park, 2010). 

 

 
 

2.1.3.1. Fluoride Removal Using Common Coagulants 

 
Coagulation and precipitation methods are the addition of chemicals and the 

subsequent precipitation of insoluble materials. Aluminum sulfate, lime, poly-aluminum 

chloride, and poly-aluminum -hydroxyl sulfate are the most frequent coagulation aids to 

precipitate insoluble fluoride (Renuka & Pushpanjali, 2013). Chemical removal of 

fluoride will be further discussed in the subsequent sections. 

 

 
 

2.1.3.2. Adsorption and Ion-Exchange 

 
Adsorption techniques for fluoride removal are used for polishing step. 

 

Adsorbents include activated alumina, modified activated carbon, hydroxyapatite, plant 

carbon, zeolites, bone, bone char, clay pots and fluoride-specific ion-exchange resin (Na 

& Park, 2010). Synthetic resins are readily available for fluoride removal using ion- 

exchange processes. Adsorption technology provides greater accessibility of adsorbents, 

lower costs compared to chemical precipitation, simplicity of operation, and a wider 

range of adsorbents as mentioned earlier (Habuda-Stanic et al., 2014; Mohapatra et al., 
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2009). The adsorption mechanisms of fluoride in water include three phases – fluoride 

mass transfer from bulk liquid to the surface of the adsorbent, adsorption of fluorides on 

the adsorbent surfaces, and transfer of fluorides onto the porous adsorbents (Mohapatra et 

al., 2009; Fan et al., 2003) 

Adsorption is effective in reducing fluoride concentrations, but in general, the 

adsorptive mechanism for fluoride has low selectivity, making the process less effective. 

In recent studies, impregnations of adsorbents with rare-earth solutions have shown a 

significant increase in fluoride selectivity and fluoride adsorption (Loganathan et al., 

2013). 

Studies have shown that to increase the adsorptive capacity of alumina, they can 

be impregnated with rare-earth solutions, typically with lanthanum or yttrium (Tomar & 

Kumar, 2013). However, fluoride removal efficiency through adsorption depends on the 

initial fluoride concentration, pH level, temperature, empty-bed contact time, and amount 

of adsorbent used (Bhatnagar et al., 2011; Fan et al., 2003; Tomar & Kumar, 2013). 

Commonly used adsorbents for fluoride removal under fixed-bed, required dose, 

interferences, and optimal operating pH are listed in Table 3: 
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Table 3: Common adsorbents for fluoride removal 
 

Adsorbent Removal Adsorption Capacity Interference Optimal pH 

 

Activated carbon 
 

≥ 90% 
 

Variable 
 

Many 
 

< 3 

Plant carbon ≥ 90% 300 mg F/kg - - 

Defluoron 2 - 360 g F/m
3 Alkalinity  

Zeolite ≥ 90% 100 mg F/kg - - 

Clay pots 60-70% 80 mg F/kg - Non-specific 

Activated alumina 80-95% 100mg-F/mg-alumina Alkalinity 5.5 

Bone - 900 g F/m
3 Arsenic >7 

Bone char - 1,000 g F/m
3 Arsenic >7 

Adapted from (Feenstra et al., 2007; Tomar & Kumar, 2013; Renuka & Pushpanjali, 2013; Edmunds & Smedley, 2013) 
 

 

 
 

Loganathan et al. (2013) identified that pH levels, co-existing anions, temperature 

and adsorption kinetics influences the adsorption mechanism the most. The study 

identified that pH is the most influential factor in fluoride removal by adsorption. 

Fluoride adsorption had the maximum removal at a pH range of 4 to 8. However, this 

removal decreases at very low pH and at very high pH. At a pH below 4, fluoride reacts 

with the hydrogen ion and produces a weak hydrofluoric (HF) acid. At pH 7 to 8, the 

removal slightly decreases because of carbonate and hydroxyl alkalinity, bicarbonate, and 

silicate ions. Therefore, the efficacy of fluoride adsorption is highest at circum-neutral pH 

around 6.5 to 8.5 (Loganathan et al., 2013; Fan et al., 2003; Bhatnagar et al., 2011). In 

addition to pH, co-existing and competing anions affect the adsorption mechanism. 

Interfering anions include phosphate (PO4
-3

), chloride (Cl
-
), sulfate (SO4

-2
), bromide (Br

-
) 

and nitrate (NO3
-
). The adsorption process decreases at lower temperatures (5ºC to 10ºC). 

At temperatures greater than 25ºC, the adsorption process increases. However, at higher 
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temperatures at around 50ºC, there are no changes in fluoride adsorption. The adsorption 

rate increases with increased adsorbent dose and at low initial fluoride concentration. 

Commonly, ion exchange resins are classified either as cation or anion based 

resins (Kumar & Jain, 2013). Strong-base ion exchange resins and chloride and 

hydroxide forms are typically used for fluoride removal. Some of the available resins are 

Polyanion, Tul-sion A-27, Deacedite FF, Amberlite IRA 400, Lewatit MIH-59 and 

Amberlite XE-75 resins (Renuka & Pushpanjali, 2013). The fluoride capacity of available 

resins depends on the initial fluoride concentrations and competing anions in the water 

(Patil & Ingole, 2012). For example, Polyanion resins have a capacity of 862 mg 

fluoride/kg of resins and 1040 mg fluoride/mg of resins for waters with fluoride- 

concentration of 2.80 and 8.10 mg/L. Rao and Bhaskaran (1998) studied various 

aluminum salts, alumina, magnesium, lime, activated carbon, and sulphonated resins. The 

study observed that sulphonated resins were able to remove fluoride concentrations of 5 

mg/L (Rao & Bhaskaran, 1998). Bhakuni (1970) studied the effectiveness of Lewatt S- 

100 resins with waters in fluoride concentrations of 4 mg/L and alkalinity concentration 

of 400 mg/L as CaCO3. The study shows loss of fluoride capacity with increasing 

alkalinity concentration (Patil et al., 1970). Renuka and Pushpanjali (2013) also 

determined that sulfate (>100 mg/L) and bicarbonate (> 200 mg/L) in water reduced the 

resin capacity by more than 33 %(Renuka & Pushpanjali, 2013). Ion-exchange resin 

regeneration requires regeneration and large amount of regenerant. Fluoride removal with 

specialized ion-exchange resins produces brine solutions with extremely high fluoride 

concentrations (Feenstra et al., 2007). Defluoridation techniques through ion-exchange 

resins are complex and extremely expensive (Renuka & Pushpanjali, 2013). 
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Activated alumina is the most common and efficient fluoride adsorbent for 

fluoride-contaminated waters. Maximum fluoride uptake and removal was observed at 

pH 5.5- 6.5 with adsorptive capacity of 1,200 mg-F/m
3
(Feenstra et al., 2007; Tomar & 

Kumar, 2013). However at acidic conditions, adsorption of fluoride was decreased. 

Langmuir and Freundlich isotherm models described fluoride removal through non- 

specific adsorption. Table 4 shows the adsorptive capacities of fluoride with activated 

alumina (Tomar & Kumar, 2013). 

 

Table 4: Adsorptive capacities for fluoride removal with the optimal pH levels 
 

 

Adsorptive 

Capacity (mg-F/g-alumina) 
pH References

 
 

 

 

Acidic alumina 8.4 3.6 – 11.6 (Goswami & Purkait, 2012) 
 

 

Activated alumina 

(α-Al2O3) 

Activated alumina 

88 5 – 6 (Bahena et al., 2002) 

(Grade OA-25) 
2 7 (Ghorai & Pant, 2004) 

 
 

Data adapted from (Tomar & Kumar, 2013) 
 

 

 
 

However, alkalinity and pH can highly impact fluoride removal by activated 

alumina. Regeneration solution from activated alumina contains significantly high 

fluoride concentrations (Feenstra et al., 2007). The literature indicates that for other 

coagulants. The presence of sulfate, bicarbonate, nitrate, and phosphate negatively impact 

fluoride removal. Therefore, it is necessary to investigate what other ions compete with 

fluoride removal when cerium chloride is used. 

Adsorbent 
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2.1.3.3. Electrochemical Process 

 
The basic principle of electro-coagulation is the in situ generation of trivalent 

metal ions by electro-dissolution of sacrificial anodes, commonly aluminum or iron metal 

plates. At the optimal pH, hydroxide ions combine with the aluminum ions and allow for 

the formation and polymerization of aluminum hydroxides. Figure 1 shows the electro- 

coagulation process. 

 

 
 

Figure 1: Electro-coagulation process typically with aluminum or iron cathode (+) and anode (-) for 

industrial treatment (Meas et al., 2010). 

 

 

 

In electro-coagulation, the precipitates are removed through sedimentation or 

flotation process (Meas et al., 2010). The equation using aluminum anode plates is 

expressed as: 

On the aluminum anode: Al → Al3+ +  3e− On 
the cathode: 2H2O + 2e− → H2 ↑ + 2OH− In 

solution:  Al3+  +  3OH−  → Al(OH)3  ↓ 

Equation 1: Reaction in electro-coagulation using aluminum anodes and the formation of aluminum 

hydroxides (Meas et al., 2010). 

+ - 

IN OUT 
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Electro-coagulation (EC) has been shown to be very effective in removing 

fluoride using aluminum electrode plates (Drouiche et al., 2012). Drouiche et al. (2012) 

investigated fluoride removal through electrochemical treatment with electro-coagulation 

for photovoltaic wastewaters. The study identified that some cations and anions interfered 

with fluoride removal in the photovoltaic wastewater. The presence of sulfate (SO4
-2

), 

bicarbonate (HCO3
-
), dihydrogen phosphate (H2PO4

-
), reduced fluoride removal 

(Drouiche et al., 2012). In addition, Hu et al. (2005) identified that co-existing anions – 

sulfate, alkalinity, and phosphate – impacts fluoride removal using electro-coagulation. 

The study revealed that the interferences of these anions were mitigated by increasing the 

amount of calcium added to the solution (Hu et al., 2005). These results were also 

observed using electrochemical treatment to remove fluoride from photovoltaic 

manufacturing wastewaters as a polishing treatment.(Drouiche et al., 2008). 

 

 
 

2.1.3.4. Membrane Processes 

 
Membrane processes include reverse osmosis, nano-filtration, ultrafiltration, and 

microfiltration. In both membrane filtration and reverse osmosis processes, contaminated 

water is passed through a semi-permeable membrane and contaminants are left behind 

depending on the particle size and pressure on the membrane. Both membrane processes 

require lots of chemicals and produce brine solutions. However, both processes have no 

ion selectivity. In particular, reverse osmosis produces high fluoride residual for disposal 

(Loganathan et al., 2013). Clogging and scaling are also expected in a reverse osmosis 

system. However, reverse osmosis can achieved fluoride removal between 45 to 90%at 

Ph levels of5.5 to 7.0(Loganathan et al., 2013; Vithanage & Bhattacharya, 2015). 
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Schneiter and Middlebrooks (1983) reported fluoride removal using reverse osmosis up 

to 59-67% at a pH of 6.40 (Schneiter & Middlebrooks, 1983). 

Electrodialysis, particularly Donnan dialysis technique, is also an acceptable 

method for defluoridation of brackish water by passing of ions through membranes with 

an electric current (Loganathan et al., 2013; Vithanage & Bhattacharya, 2015). 

Membrane processes for fluoride removal have high capital and maintenance costs, and 

are extremely prone to fouling. They require high expertise in operation and skillful 

operators (Vithanage & Bhattacharya, 2015). 

 

 
 

2.2. Phosphate in Wastewater 

 
2.2.1. Occurrence of Phosphate (PO4

-3
-P) 

Phosphate can be present as either orthophosphate, polyphosphates, meta- 

phosphates, and as organophosphates. The presence of excess phosphate in any body of 

water can cause eutrophication (De Gregorio et al., 2011). Typical domestic wastewater 

would contain phosphate (PO4
-3

-P) concentrations from 3 mg/L to 11 mg/L (Metcalf & 

Eddy, 2014). Another source of phosphate in waters is agricultural and urban runoff 

(Parsons & Smith, 2008; Minton & Carlson, 1972) 
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2.2.2. Phosphate Removal Technologies 

 
2.2.2.1. Precipitation Using Typical Coagulants 

 
Phosphate can be removed from waters biologically or chemically. Normally, 

chemical precipitation of phosphate is achieved with the addition of multivalent metal 

coagulants. Typical multivalent metal ions used for phosphate precipitation include 

calcium, aluminum and iron salts(Metcalf & Eddy, 2014). Chemical removal of 

phosphate will be discussed in the subsequent sections (Litke, 1999; Jenkins et al., 1971; 

Parsons & Smith, 2008). 

 

 
 

2.2.2.2. Enhanced Biological Phosphorus Removal (EBPR) 

 
Phosphate removal is required for all wastewater treatment facility to reduce the 

risk of eutrophication and algal growth in receiving waters. Phosphate can be removed 

chemically (coagulant/precipitation) or biologically (enhanced biological phosphate 

removal)(Metcalf & Eddy, 2014). An effective EBPR treatment process can lead to 80 to 

90 %phosphate (PO4
-3

-P) removal (Greaves et al., 1999)and can produce an effluent 

phosphate(PO4
-3

-P) less than 1 mg/L (Metcalf & Eddy, 2014). In EBPR process, 

polyphosphate accumulating organisms (PAOs) release phosphate under anaerobic 

conditions, and under aerobic conditions release phosphate(Greaves et al., 1999; Metcalf 

& Eddy, 2014). 

 
Under anaerobic conditions (absence of oxygen and nitrate), PAOs take up 

volatile fatty acids (VFAs), such as butyrate, acetate, priopionate and break down 

polyphosphate to release orthophosphate (soluble phosphate) for energy generation 
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Secondary Clarifier 

(Greaves et al., 1999). The process then introduces significant soluble phosphate in the 

mixed liquor and converts large amounts of soluble VFAs to polyhydroalkanoates(PHAs) 

(Greaves et al., 1999; Metcalf & Eddy, 2014; Stratflul et al., 1999). Under aerobic 

conditions (presence of oxygen), PAOs consume and store soluble phosphate beyond the 

required phosphate for biomass production; when PAOs consume excess phosphate, the 

process is called ―luxury‖ uptake(Greaves et al., 1999; Stratflul et al., 1999).  Thus, in a 

typical activated sludge process to treat wastewater, when EBPR is practiced, the sludge 

contains a high concentration of polyphosphate. By wasting the sludge during 

clarification, phosphate is then removed from the wastewater (Morse et al., 1998). 

Figure 2 shows the EBPR process in a wastewater treatment facility. 
 

 

 

 

 
 

Effluent 

 
 
 
 
 
 
 

Wasted Sludge contains 

PAO (with P) 

 
 

Figure 2: Enhance biological phosphate removal process. Illustration adapted from (Greaves et al., 1999; 

Stratflul et al., 1999). 

 

2.3. Phosphate and Fluoride Removal using Typical Coagulants 

Coagulation/precipitation is the process of adding chemical to water to destabilize 

particles and/or to form precipitates of target soluble contaminants. The mechanism of 

soluble contaminant removal by precipitation typically involves precipitate formation and 

adsorption of the soluble contaminants to the surface of the precipitate (MWH Global, 
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2012).  In natural waters, coagulation/precipitation involves the reaction between 

coagulant chemicals, natural organic matter (NOM), and the surface of particles or 

precipitates to produce micro-particles. When these micro-particles collide, they form 

larger particles, called ―flocs‖ (Sillanpaa & Matilaninen, 2014)that precipitate out of 

water and can be removed by sedimentation and/or filtration (Johnson & Amirtharajah, 

1983; Metcalf & Eddy, 2014). Coagulation has been used in water treatment primarily to 

reduce turbidity also to promote the precipitation of soluble contaminants (Sillanpaa & 

Matilaninen, 2014). The four primary mechanisms in particle removal and colloidal 

particles are enmeshment or entrapment, charge neutralization or destabilization, 

adsorption for inter-particle bridging (Johnson & Amirtharajah, 1983), and complexation 

or precipitation(Sillanpaa & Matilaninen, 2014). Figure 3 below provides the different 

coagulation mechanisms. 

 

 

 
Figure 3: Removal mechanisms of particulate matter during coagulation process. Illustration adapted from 

(Sillanpaa & Matilaninen, 2014). 
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4 

4 

Aluminum sulfate (i.e. alum), ferric chloride, and lime are the most common 

coagulants used for coagulation/precipitation of phosphates (i.e. phosphate) in domestic 

wastewaters (MWH Global, 2012; Metcalf & Eddy, 2014). 

These chemicals rapidly hydrolyze in waters and immediately remove phosphates. 

 

The reaction for alum and ferric chloride are shown in the following (Metcalf & Eddy, 

2014): 

 a  Al3+ +  Hn PO3−n
 — AlPO4 (am ) ↓ + nH+

 

 b  Fe3+  +  Hn PO3−n
 — FePO4 (am ) ↓ + nH+

 

Equation 2: a) Phosphate precipitation using aluminum (e.g. aluminum sulfate) salts; (b) phosphate 
precipitation using iron (e.g. ferric chloride) salts. 

 

 

 
When metal salts are added in excess, these metal ions can produce metal oxides 

or hydroxides (e.g. aluminum hydroxide and ferric hydroxide) to which soluble 

contaminants can be adsorbed. This reaction can occur both for phosphate and fluoride 

removal in any water. Phosphates can be removed through co-precipitation and 

adsorption onto metal hydroxides. The mechanisms can be expressed with the following 

equations: 

 a  Al3+  +  3H2O  ↔  Al(OH)3   ↓  + 3H+
 

 b  Fe3+ +  3H2O  ↔  Fe(OH)3   ↓  + 3H+
 

Equation 3: Metal hydroxide formations for co-precipitation and adsorption of phosphates - (a) aluminum 
salt and (b) iron salts. Equation adapted from (MWH Global, 2012). 
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4 

Aside from the aforementioned considerations, water quality parameters such as 

alkalinity, presence of other ions (e.g. sulfate, nitrate, fluoride, and etc.), and other trace 

elements found in wastewaters also impact phosphate precipitation. The equation below 

describes the potential reactions that can occur in waters (Metcalf & Eddy, 2014): 

rMe3+  +  HPO−  +    3r − 1 OH−
 →  Mer    ∙  H2PO4(OH)3r−1 (s) 

Equation 4: Phosphate precipitation using metal salts with other constituent considerations – where r values 
are 1.6 for iron salts, and 0.80 for aluminum salts. Equation adapted from (Metcalf & Eddy, 2014). 

 

 

 
However, the precipitation of phosphates in waters is not generally simple. 

 

Competing ions and other reactions must be considered in order to remove phosphates or 

target contaminants from waters. 

Besides using aluminum and iron salts, calcium can also be added to remove 

phosphates in water; calcium-based solutions such as quick lime or slurry lime are 

typically used for phosphate precipitation. Phosphate removal using lime requires large 

amounts of chemicals and produces more sludge compared to aluminum and iron 

salts(U.S. Environmental Protection Agency, 2000). 

Coagulation/precipitation is also the most widely-used and well-established 

process in fluoride treatment. Typical coagulants used for fluoride 

coagulation/precipitation include alum (aluminum sulfate), gypsum and fluorite 

lime(Edmunds & Smedley, 2013), calcium oxide, calcium chloride(Edmunds & Smedley, 

2013), magnesium oxide(Vithanage & Bhattacharya, 2015), and, sequential addition of 

alum and lime (i.e. Nalgonda technique) (Renuka & Pushpanjali, 2013; Vithanage 
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&Bhattacharya, 2015). The reaction for fluoride precipitation using aluminum-, calcium-, 

and magnesium-based salts are seen below: 

 a  Al3+ +  3F−   ↔  AlF3  ↓ 

 b  Mg2+ +  2F−   ↔  MgF2  ↓ 

 c  Ca2+ +  2F−   ↔  CaF2  ↓ 

Equation 5: Fluoride precipitation reactions. (a) Fluoride precipitation using aluminum salts, (b) 
magnesium salts, and (c) calcium salts. 

 

 

 
Coagulation/precipitation can provide more than 90% fluoride removal, 

depending on the coagulant. Removal efficiencies are non-specific for fluoride removal; 

however, pH does make an impact on the solubility constants of the precipitates 

(Vithanage & Bhattacharya, 2015). 

At high fluoride concentrations, lime precipitation is commonly used and is the 

least expensive way to remove fluoride and precipitate as calcium fluoride (CaF2). 

However, this process can only reduce the fluoride concentration to 17 to 20 
 

mg/L(Renuka & Pushpanjali, 2013; Edmunds & Smedley, 2013). The significant 

addition of lime results in higher alkalinity and hardness (Drouiche et al., 2008). 

Aluminum salts are also viable coagulants for fluoride removal. Co-precipitation or 

adsorption precipitation can occur when excess amount of aluminum salt is added to 

remove fluoride-containing solutions. Fluoride removal through aluminum co- 

precipitation and adsorption is expressed by the following equation. 
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(aq) 

4 

4 

 a  nAl3+ +  3n − m OH− +  mF−   →  Aln Fm  (OH)3n−m 

 b  Aln (OH)3n (s)  +  F−   →  (OH)3n−m  (s)  + mOH−
 

Equation 6: Fluoride precipitation with aluminum salt - (a) co-precipitation and (b) adsorption. Equation 
adapted from (Hu et al., 2005) 

 

2.3.1. Effect of Dose, pH and Alkalinity for Phosphate and Fluoride Removal 

Equation 7 describes the stoichiometric addition of alum or iron salt and the 

 

precipitation of metal hydroxides. When aluminum and iron salts are added to water, it 

immediately hydrolyzes and produces strong acids – sulfuric and hydrochloric acid; the 

reaction will lower the pH and will consume majority of the alkalinity. These reactions 

are expressed by the following equation: 

 a  Al2(SO4)3  ∙  14H2O  →  2Al(OH)3    ↓  + 6H+  +  3SO−2
 +  8H2O 

 b  Fe2(SO4)3  ∙  9H2O  →  2Fe(OH)3    ↓  + 6H+ +  3SO−2
 +  6H2O 

Equation 7: Formation of metal hydroxides and the acidification of solution based on the stoichiometric 
equation. (a) Reaction of aluminum sulfate when added to water; (b) reaction of ferric chloride when added 

to water. 

 

 

 
To reduce the effects of pH depression when strong acids are added, caustic soda 

(i.e. sodium hydroxide) or lime (i.e. calcium hydroxide) can be added to the water 

following the addition of coagulants (MWH Global, 2012; Metcalf & Eddy, 2014). The 

overall reaction of aluminum salt with the addition of alkalinity through caustic soda or 

lime can be expressed as: 
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 a Al2(SO4)3 ∙ 14H2O +  6NaOH →  2Al(OH)3 (am )  ↓ + 3Na2SO4 +  14H2 O 

 b  Al2(SO4)3  ∙ 14H2O +  3Ca(OH)2  →  2Al(OH)3 (am )  ↓ + 3CaSO4  +  14H2O 

Equation 8: Corresponding reactions for adding (a) caustic soda and (b) lime to negate pH decrease and 
increase alkalinity. 

 

 

 
Phosphate precipitation with aluminum and iron salts is highly effective between 

the pH ranges of 6-8.5(Mohammed & Shanshool, 2009). For calcium salts, the optimum 

pH was determined as greater than 10 (Mohammed & Shanshool, 2009). Other studies 

have identified that alum precipitation is effective between pH of 5.5 to 6.5 (Mohammed 

& Shanshool, 2009) and 6.50 to 7.50(Ebeling et al., 2003); consequently, the optimum 

pH for iron salts is from 4.5 to 5.0(Mohammed & Shanshool, 2009) and have identified 

pH from 4 to 11(Ebeling et al., 2003). 

Given the stoichiometric equation of metal ions to phosphates, phosphates can be 

removed given a 1:1 molar ratio (Metcalf & Eddy, 2014). However, it has been described 

that a 1.5 to 2 molar ratio is required for phosphate removal. A higher molar dose is 

required because of various competing ions – sulfate, nitrate, and carbonate - in 

wastewaters (Szabo et al., 2008). The amount of lime used for phosphate precipitation in 

wastewater is typically 1.4 to 1.50 times more than the alkalinity in water (Metcalf & 

Eddy, 2014).  However, pH adjustment is necessary after lime addition. 

Alum and lime have proven to be effective in fluoride removal in a wider pH 

range. The required doses for fluoride removal are listed in Table 5. 
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Table 5: Fluoride removal through precipitation using typical coagulants 
 

 

Coagulant Removal Required Dose 
 

Aluminum Sulfate 

(i.e. Alum) 
≥ 90 % 150 mg/mg F 

 
 

Lime ≥ 90 % 30 mg/mg F 

Alum + Lime 

(i.e. Nalgonda) 
70 - 90 % (150 mg alum + 7 mg lime)/mg F 

 

Gypsum + Fluorite Not Listed (5 mg gypsum + < 2mg fluorite_/mg F 

Calcium Chloride  ≥ 90 % 3 mg CaCl2/mg F 

Adapted from (Feenstra et al., 2007; Tomar & Kumar, 2013; Renuka & Pushpanjali, 2013) 
 

 

 

 

 

Alum and lime provides more than 90-% fluoride removal. However, the 

Nalgonda technique – addition of alum and lime – produces 70% to 90% fluoride 

removal efficiencies at the optimal pH of 6.5. Calcium chloride only works at an 

optimum pH of 6.5-8.0 for fluoride removal (Feenstra et al., 2007). Therefore, pH plays a 

significant role on fluoride removal using typical coagulants. 

 

 
2.4. Rare-Earth Elements as a New Coagulant 

 
2.4.1. Background 

 
The use of rare-earth solutions – for precipitation of fluorides, phosphates, and 

oxides – has shown great potential in removing phosphate and fluoride in groundwater. 

Rare-earth based products such as lanthanum oxide (LaO3), cerium chloride (CeCl3), 

cerium oxide (CeO3), lanthanum nitrate (La(NO3)3), and yttrium oxide (YtO3) have been 

developed for water treatment. Rare-earth elements (REE) – commonly called 

lanthanides – consist of lanthanum to lutetium (atomic number from 57 to 71) including 
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yttrium (atomic number of 39). China produces more REEs than any other country. In 

2001, China had an annual REE production of 80,600 metrics tons of rare-earth oxide 

(REO), followed by United States (5,000 metric tons of REO equivalent), and 

Kyrgyzstan (3,800 metric tons of REO equivalent) (Castor & Hedrick, n.d.). 

REEs are commonly used in automotive applications for pollution control, oil- 

refinery fluid cracking, pharmaceuticals, semiconductors and capacitors, aluminum 

alloys, and glass-polishing compounds (Castor & Hedrick, n.d.). In addition, increased 

growth is expected for REEs in lasers, fiber optics, and for automotive pollution catalysts 

(Castor & Hedrick, n.d.). These elements are also prevalent in high-tech consumer 

products such as cell phones, flat-screen televisions, computer monitors, external hard 

drives, and electric cars. REEs have also found use in various military products such as 

smart bombs, guided missiles, and other military munitions (Bleiwas & Gambogi, 2013). 

Table 6lists the common applications of rare-earth elements with highest weight percent 

by oxide. 
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Table 6: Common applications of highest weighted rare-earth elements 
 

 

Rare-Earth Element 
 

Application 
Yttrium Lanthanum Cerium Prasedymium Neodymium 

Alloys X X X X X 

Batteries  X X X X 

Catalysts X X X X X 

Ceramics X X X X X 

Electronics X X X X X 

Fertilizers  X X  X 

Glass X X X X X 

Lamps X X X X  

Lasers X X X X X 

Magnets   X X X 

Medical uses  X X  X 

Neutron adsorption X  X   

Phosphors X X X   

Table adapted from (Bleiwas & Gambogi, 2013) 
 

 

 

 

Most of cerium based precipitates are insoluble, particularly cerium phosphate 

and cerium fluoride. Solubility products allow determining the formation of complexes, 

and the removal of ions from waters (Metcalf & Eddy, 2014). Solubility products for 

various possible reactions with tri- and divalent metal coagulants are listed in Table 7. 



www.manaraa.com

30  

M
O

R
E

 S
O

L
U

B
L

E
 →

 
←

 L
E

S
S

 S
O

L
U

B
L

E
 

Table 7: Solubility products for various reactions of tri- and divalent metals 
 

Compound Formula Solubility Product 

Cerium (III) sulfate 
A
 Ce2(SO4)3 ∙2H2O 9.84 

Aluminum (III) fluoride 
A
 AlF3 0.670 

Cerium (III) hydroxide 
A
 Ce(OH)3 9.00 x10

-05
 

Calcium hydroxide 
B
 Ca(OH)2 5.02 x10

-06
 

Calcium fluoride 
B
 CaF3 3.45 x10

-11
 

Cerium (III) phosphate 
A
 CePO4 7.43 x10

-11
 

Cerium (III) fluoride 
B
 CeF3 8.00 x10

-16
 

Iron (II) hydroxide 
B
 Fe(OH)2 8.00 x10

-16
 

Lanthanum (III) fluoride 
B
 LaF3 7.00 x10

-17
 

Aluminum (III) phosphate 
B
 AlPO4 9.84 x10

-21
 

Lanthanum (III) hydroxide 
B
 La(OH)3 2.00 x10

-21
 

Iron (III) phosphate 
B
 FePO4 1.30 x10

-22
 

Lanthanum (III) phosphate LaPO4 7.08 x10
-27

 

Calcium phosphate 
B
 Ca3(PO4)2 2.00 x10

-29
 

Aluminum (III) hydroxide 
B
 Al(OH)3 3.00 x10

-34
 

Iron (III) hydroxide 
B
 Fe(OH)3 4.00 x10

-38
 

A – Temperature at 293 K 

B – Temperature at 298 K 

  

 

Table adapted from (Firsching & Brune, 1991; Haynes, 2015) 
 

 

 

The solubility products of lanthanum-fluoride and lanthanum-phosphate are 7x10
- 

17
(Haynes, 2015)and 7.08x10

-27
(Firsching & Brune, 1991), respectively. Likewise, the 

solubility products of cerium fluoride and cerium phosphate are 8x10
-16

(Haynes, 2015) 

and 7.43x10
-11

(Haynes, 2015), respectively. 
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Solubility and pH play an important role in the formation of soluble and insoluble 

complexes, sludge production, and removal mechanism. At high pH levels, the net 

surface charge of the metal-hydroxides will be negatively charged. At low pH levels, the 

surface charge is positively charged. Therefore, at high pH levels, adsorption of anions is 

not likely favored (MWH Global, 2012). 

Comparing lanthanum-based precipitates, the coagulation and precipitation of 

fluoride and phosphates produce significantly less insoluble materials. In addition, the 

stoichiometric equation produces a molar ratio of 1:1 for cerium or lanthanum to 

phosphate and 1:3 for cerium or lanthanum to fluoride, as seen in the equation below: 

3+ − 

 �  � � 𝐹3 (� ) ↔ � � (� �  ) + 3𝐹(� �  ) 
3+ − 3 

 �  � � � � 4 (� ) ↔ � � (� �  ) + � � 4 (� �  ) 

Equation 9: Stoichiometric equation of cerium to (a) fluoride and (b) phosphate. Lanthanum molar ratio 
equation is similar of that cerium formation. 

 

 

 
The precipitation process with the rare-earth salt, lanthanum  salts, has been 

shown to be a better process of phosphates precipitation compared to aluminum (i.e as 

Al
3+

) and iron (i.e. as Fe
3+

) salts addition with a wider pH range of 4.5 to 8.5(Recht et al., 

1970). 

Aside from coagulant use, rare-earth salts are known to inhibit bacterial growth in 

small dosages; however, there is limited information about toxicity with different micro- 

organisms. Burkes and McCleskey (1947) examined the bacterio-static activity of cerium, 

lanthanum, and thallium salts. They determined inhibition through plate count after 1, 2, 

3 and 5 day incubation. The study provided inhibition data for more than 40 species of 
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microorganisms. Selected species were from this developed pool of testing specie by 

Burkes and McCleskey (1947). Results from the study showed relatively good 

bacteriostatic activity for the 39 species tested. Cerium chloride with concentrations from 

0.0006 M to 0.0012 M showed growth inhibition to 39 out of 40 specie tested; using 

lanthanum chloride with concentrations of 0.0002 M to 0.0008 M; and with 

concentrations of thallium nitrate from 0.0005 M to 0.0010 M (Burkes & McCleskey, 

1947). In recent years, development of cerium oxide powders and nanoparticles has 

shown applicability for antibacterial usage (Pelletier et al., 2010). Pelletier et al. (2010) 

studied variations of cerium oxide nanoparticle concentrations with changing incubation 

period (0, 1, 5, and 24 hour incubation). Bacteriological toxicity were quantified by disk 

diffusion test, determination of minimum inhibitory concentrations (MICs), CFU 

measurements and plate counts, live/dead viability assays, superoxide production, and 

through micro-array hydridization and analysis (Pelletier et al., 2010). The study showed 

growth inhibition for E. coli and B. subtilis as a function of nanoparticle concentration 

and size. The result can be related to the interaction of nanoparticles in aqueous solutions 

and the different metabolic mechanisms of each bacterium. The fact that rare earth salts 

have been proven to have some disinfection properties shows the need to study this 

property for application in drinking and wastewater treatment. 

Rare-earth metals lanthanum and cerium-doped natural adsorbents have shown 

potential particularly in fluoride removal. Na et al. (2010) identified that lanthanum 

hydroxide adsorbent had an adsorption capacity of 242.2 mg of fluoride/g of adsorbent at 

pH < 7.5. However, the adsorption capacity decreased at a pH greater than 10 to 24.8 

mg/g. In a previous study, Raichur et al. (2001) identified increased fluoride 
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adsorbed(>90%) with increased adsorbent dose (>3 mg/L) at a final pH of 6.5. A (>90%) 

adsorption and maximum adsorption was achieved at a pH of 6 to 6.5; the optimal 

fluoride adsorption was determined to be between pH 5 to 7.  However at lower pH 

levels, the adsorption ranged from 40% to 60%, because of the formation of weak 

hydrofluoric acid. Furthermore, the fluoride adsorption greatly decreased at alkaline pH 

level. This can be attributed to the competition of hydroxyl ions with the fluoride ions 

onto the adsorbents. Nitrate and sulfate interferences were studied. The adsorption 

capacity, with 100 mg/L sulfate, decreased from 85% to 84%; consequently, the presence 

of nitrate (100 mg/L) reduced the capacity from 85% to 80% (Raichur & Basu, 2001) 

In a recent study by Strileski (2013) at UNLV, lanthanum chloride was shown to 

better remove phosphate from wastewater than alum and ferric chloride. A 99% 

phosphate removal was achieved with 1:1 molar ratio (La:PO4
-3

). Furthermore, the study 

determined a phosphate removal efficiency of 85-% even at pH of 2. Compared to alum 
 

and ferric chloride, lanthanum showed greater removal at lower pH level (Strileski, 

2013). This makes rare earth coagulants very suitable for phosphate removal from waste 

streams with low pH levels. 

In addition to fluoride removal, rare-earth doped adsorbents have been recently 

investigated due to their effective phosphate adsorptive capacity. Rare-earth doped 

adsorbents that have been used include cerium (III) exchanged natural zeolite (Haron et 

al., 2008; Lee & Rees, 1987), cerium oxides incorporated onto natural zeolite (Hashimoto 

et al., 1997), lanthanum doped activated carbon fiber(Zhang et al., 2012), lanthanum- 

impregnated silica gels (Wasay et al., 1996), lanthanum-doped zeolites (Li et al., 2005; Li 
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et al., 2009; Ning et al., 2008), lanthanum-doped chelex resin (Wu et al., 2007), and 

lanthanum-doped silicates (Qu et al., 2007; Zhang et al., 2010). 

 

 
 

2.5. Response Surface Methodology: Central Composite Design 

 
Response surface methodology (RSM) is a mathematical and statistical analysis 

of relationship between a response (Y), and various associated independent variables or 

factors that control the response (Khuri & Mukhopadyay, 2010). Independent variables 

(X1, X2, and X3) are experimental variables or factors that can be changed, independent 

from each other. In this study, independent variables comprise pH, initial fluoride 

concentration, and coagulant (e.g. cerium chloride) dose. Experimental response or 

dependent variable is the measured result from the experimental analysis (Bas & Boyaci, 

2007; Bezerra et al., 2008), which in this study is fluoride removal. 

RSM is developed to empirically model experimental response, and to overcome 

limitations of one-factor optimization. RSM allows for multivariate statistical analysis, 

and simultaneously optimize these independent variables to attain the highest probable 

response (e.g. fluoride removal) (Bezerra et al., 2008). RSM offers several advantages 

compared to other statistical methods. RSM predicts responses based on a very small 

amount of experimental data. In addition, RSM provides the interaction between 

independent variables on the response. RSM is widely used for optimization of chemical 

and biochemical process (Bas & Boyaci, 2007). One drawback of RSM, however, is the 

fitting the data to quadratic equation (Lundstedt et al., 1998; Bas & Boyaci, 2007). 
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1 

RSM can be classified into first- or second order design models. First-order model 

can be used when there is no curvature on the predicted response surface. However, in 

cases where linear model cannot describe the experimental results or responses, quadratic 

responses surfaces are used, which include: full-factorial, central composite, Box- 

Behnken, and Doehlert designs. In practice, designs such as Box-Behnken, central 

composite, and Doehlert designs are typically used to accommodate fewer sample runs 

(Bezerra et al., 2008; The Pennsylvania State University, 2015).The second-degree model 

can be described as: 

�  = � �  + � 1� 1 + � 2� 2 + � 3� 3 + � 12 � 1� 2 + � 13 � 1� 3 + � 23 � 2� 3  + � 11 �
2

 
2 2 

+ � 22 � 2 + � 33 � 3 

Equation 10: Central Composite design equation using a second-order model (i.e. quadratic model) 
 

 

 
Where the model coefficients b0…b3 are the linear regression coefficients of the 

quadratic predicted response; b11…b33 are the cross-product coefficients for each 

parameter. 

In this study, a central composite design (CCD) model was used to predict 

fluoride removal. CCD models have been previously used to identify optimal conditions 

for chromium (VI) removal from ion-exchange brine solutions (Pakzadeh & Batista, 

2011; Zaroual et al., 2009) and for optimization of Fenton process for COD removal 

(Asghar et al., 2014). Response surface model – Box-Behnken model – was to use 

optimize seed extract dose for fluoride removal in drinking water (Jafari et al., 2014). 

A CCD consists of the following: (1) full-factorial points, (2) a star (axial) points 

which are experimental points at distance from its center, and (3) center points (Bas 
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&Boyaci, 2007; Lundstedt et al., 1998). A full-factorial experiment design consists of 2
k 

experiments, 2k for star (axial) points, and nc center points, where k is total number of 

factors (e.g. pH, initial fluoride concentration, and coagulant dose) being investigated. In 

general, star (axial) points are at some + α (alpha) and - α (alpha) distance from each axis 

that allow for the estimate of quadratic coefficients of the model. For a 3 factor-level 

CCD model, there will be 8 factorial points, 8 star points, and 5 center points; thereby, 

total of 20 experimental runs. 

The CCD factors are entered as coded level as (-) minus for low levels, and (+) 

plus for high levels. The low and high levels should correspond to the range of values for 

each factor being investigated. A zero-level is also included to represent the middle range 

of the investigated variables (Lundstedt et al., 1998). There are three types of central 

composite design which are: (1) circumscribed (CCC), inscribed (CCI), and face-centered 

(CCF). Circumscribed (CCC) and inscribed (CCI) models are typically used when 

evaluating operating conditions with five levels for each independent variable. The 

former is used when the area of operability – region where the independent variables can 

vary – lies with the area of concern. And, the latter is used when the region of operability 

and concern coincide each other. On the other hand, face-centered (FCC) models are used 

when the axial (i.e. alpha or star) points must correspond to the defined low and high 

levels of the independent factor; the axial points of the FCC match the surface of the 

cubic(National Institute of Standards and Technology, 2003). In face-centered design, the 

axial points fall at the center of each face of the factorial design, so α (alpha) = ±1 

(National Institute of Standards and Technology, 2003; The Pennsylvania State 

University, 2015). All FCC designs are composed of three levels for each independent 
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variable (Yang, 2008).A face-centered central composite design was used to optimize 

fluoride removal on industrial wastewater, since three-level and three factors (e.g. pH, 

fluoride concentration, and cerium dose) are being evaluated. 
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CHAPTER 3: MATERIALS AND METHODS 

 

 

 
 

To determine the effectiveness of cerium chloride to remove fluoride and 

phosphate from waters, both batch and column bench tests were performed. Column 

adsorption tests were performed to investigate the removal of phosphate using various 

media (i.e. GAC, zeolite, and anthracite) impregnated with cerium chloride. Batch tests 

were used to support central composite design (CCD) model to evaluate the impact of 

major parameters on the removal of fluoride from industrial wastewater. In addition, 

batch tests were also used to investigate the interference of competing ions on the 

removal of fluoride using cerium chloride. 

 

 
 

3.1. Developing Central Composite Design (CCD) 

 
In this study, a three-factorial and three-level CCD with duplicate experiments for 

non-centered and six-center points was performed to investigate the most important 

variables involved in the removal of fluoride from waters using cerium chloride. The 

model resulted in 20 distinct batch tests and40 batch tests, after including replication. 

The major parameters - pH, initial fluoride concentration, and molar dose – were 

designated as X1, X2, and X3 for the un-coded variables, respectively. The statistical 

program, SAS JMP, was used to develop and predict responses, and to calculate 

parameter coefficients, lack of variance, and lack of fit analyses. Table 8 lists the coded 

and un-coded values for the central composite design. The coded values were assigned (- 
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1), 0 and, (+1). Values for the high and low levels are based on data reported in the 

literature for typical fluoride contaminated industrial wastewaters. 

 

Table 8: Coded and un-coded levels of each factor for the central composite design 

for fluoride removal – changing pH level, molar ratio, and fluoride concentration 
 

 

Independent 

Variables (Uncoded) 

Coded Level 

 
 

 

pH 
 

 

Initial Fluoride 

Concentration 
 

 

 

Cerium Dose (mM) 
 

 

 

 

After determining the independent variables that impact fluoride removal and 

their typical values, each factor is then entered into the response surface design of choice. 

In this study, a central composite design (CCD) was selected and SAS JMP statistical 

program was used to create the CCD model. A face-centered CCD model was selected 

because study involves 3-level independent variables, which meant that the axial (star) 

points are +α and –α on the axial surface. In some cases where five levels are being 

evaluated, a circumscribed (CCC) or inscribed (CCI) would be the appropriate CCD 

design model. 

After establishing the axial distance, the program generates a table with the 

experiment runs, and independent variables based on the high, middle, and low level 

variable provided. The experimental run and run order for this study can be seen on Table 

14 (Chapter 4), columns 1 to 4. Batch experiments were run based on the run order ofthe 

program’s output (Table 14, column one). After running all batch experiments with 

Unit Symbol 
-1 0 1 

Value X1 2.0 ±0.2 4.75 ±0.5 6.50 ±0.7 

 

mg/L 
 

X2 
 

10 ±1 
 

100 ±10 
 

1,000 ±100 

Value X3 6.25 12.5 25.0 
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duplicate, experimental responses were then logged into the program. The model 

generates an equation, and predicts responses (i.e. fluoride removal) based on the 

equation. 

Since the quadratic equation utilizes coded levels for prediction, it was necessary 

to determine equivalent distance and value for each un-coded levels to estimate fluoride 

removal and plot the data as contour plots. The equation used to calculate the halfway 

point for the coded and uncoded levels is: 

𝐻� 𝑙� 𝑤� 𝑦 � � 𝑖� �  = 

�  + �  2 

Equation 11: Equation to calculate halfway points for the coded and uncoded levels. 
 

 

Where, halfway point is the distance between two points for the coded (i.e. +1, 0,-1) 

and un-coded levels (e.g. fluoride = 10, 100, and 1,000 mg/L). Each point then represents 

the actual values for pH, fluoride concentration, and cerium dose. 

 

 
 

3.2. Experiments Based on the Central Composite Design (CCD) 

 
3.2.1. Batch Test for CCD Model 

 
Aliquots of stock solutions were transferred to 50-mL plastic bottles and then 

diluted with distilled water to obtain the desired concentrations. The pH of the solutions 

was adjusted using 0.01 N HCl, 0.01 N KOH, bicarbonate and 0.10 N NaOH to achieve 

pH levels ranging from 2.0 to 6.75. Because Sorbx-100 is very acidic (pH = 3.20 to 3.50), 

it was necessary to develop titration curves using concentrated solutions for pH 

adjustment purposes. 



www.manaraa.com

41  

After all stock solution preparations, the sealed bottles were shaken vigorously for 

1 minute and placed onto a shaker at 200 rpm for 15 minutes. Preliminary kinetic testing 

showed that mixing time showed no impact on precipitation using cerium chloride. 

Samples were transferred into 50-mL plastic vials and placed in a Sorvall Legend RT 

centrifuge (Thermo Fisher Scientific Inc., USA) at 2500 rpm for 5 minutes. Decant 

volumes were transferred to 100-mL plastic bottles for storage and filtered through a 0.20 

um Whatman glass fiber filter. Filtered samples were analyzed for the compounds of 

interest. 

 

 
 

3.2.2. Batch Tests for Effect of pH, Cerium Dose, and Initial Fluoride 

Concentration 

The model results and batch experiments guided the next series of batch 

experiments. Furthermore, the results of statistical calculation using the model design 

identified the major effects of each factors. To identify the major effect of pH, a series of 

batch tests were performed with initial fluoride concentrations of 1,000 mg/L (52.63 mM) 

with increasing cerium dose (6.25, 12.5 and 25 mM), and varying pH levels from 2 to 8. 

Since the cerium chloride solution is very acidic and depresses the pH, higher cumulative 

volumes of cerium added to the solution led to a significant decrease in pH. Titration 

curves were necessary to identify the optimal amount of sodium hydroxide to add to the 

solution to maintain a pH greater than 6.0. Higher removal efficiencies were achieved at 

fluoride concentrations of 100 mg/L. However, this is not a great representation of the 

fluoride concentrations in industrial waters. As previously cited, fluoride concentrations 
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in industrial wastewater can range from 100 mg/L (5.26 mM) to 1,000 mg/L (52.63 mM) 

(Table 1) (Hu et al., 2005; Hamdi & Srasra, 2007; Gurtubay et al., 2010). 

The impacts of sulfate, nitrate, and bicarbonate on fluoride were investigated. 

 

Sulfate can be found in fluoride-contaminated wastewater. Typical sulfate concentrations 

in fluoride-contaminated wastewater can range up to 3,700 mg/L (60.0mM). However, 

preliminary testing determined that sulfate concentration less than 100 mg/L (1.04 mM) 

showed no impact on fluoride concentration. A sulfate concentration of 20 mg/L (0.21 

mM) was added to all batch solutions (Hu et al., 2005). Chloride concentration in 

industrial wastewater typically ranges from 13 mg/L (0.37 mM)(Hu et al., 2005) to 

25,300 mg/L (714.7 mM)(Gurtubay et al., 2010)and sodium concentrations from 900 

mg/L (39.1 mM)(Hamdi & Srasra, 2007) to 10,000 mg/L (434.8 mM)(Gurtubay et al., 

2010). Therefore, 1% salinity (10,000 mg/L as NaCl) was maintained throughout the 

entire experiments to somewhat simulate industrial wastewaters. 

All batch experiments were run in duplicate to reduce experimental errors. Table 

9 summarizes the batch tests performed to evaluate the effect of pH, cerium dose, and 

fluoride concentration. 

 

Table 9: Experimental matrix for the effect of pH, cerium dose, and fluoride 

concentration 
 

# 
Cerium Dose 

(mM) 

Fluoride 

(mg/L) 

Fluoride 

(mM) 

  
pH 

 

1 6.25 
1
 1,000 52.63 2 3.5 4.75 7.50 8.75 

2 12.5 
2
 1,000 52.63 2 3.5 4.75 7.50 8.75 

3 25.0 
3
 1,000 52.63 2 4.75 5.50 

1
-
 2

-
 

1 – pH > 5 is attained without adding exaggerated amount 

2 – pH > 5 is attained without adding exaggerated amount 
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3.2.3. Batch Tests to Evaluate the Effect of Fluoride Concentration and Cerium 

Dose 

To investigate the effect of fluoride concentration and cerium doses, six additional 

batch tests were performed. Solutions with fluoride concentrations of 100 mg/L (5.26 

mM) and 1,000 mg/L (52.63 mM) were prepared with increasing cerium dose (6.25, 12.5 

and 25 mM), with a constant pH of 4.75, 20 mg/L (0.21 mM) sulfate, and 1% salinity 

(10,000 mg/L as NaCl). All tests were performed twice to account variation between 

tests. Table 10 summarizes the batch tests performed to evaluate the effect of fluoride 

concentration and cerium dose. 

 

Table 10: Experimental matrix to evaluate the effect of cerium dose and initial 

fluoride concentration 
 

 

# 
Fluoride 

(mg/L) 

Fluoride 

(mM) 
pH Cerium Dose (mM) 

 

1 100 5.26 4.75 6.25 12.5 25.0 

2 1,000 52.6 4.75 6.25 12.5 25.0 

 

 

 

 

3.2.4. Batch Tests to Evaluate the Effect of Bicarbonate and Cerium Dose 

 
To investigate the effect of bicarbonate concentration and cerium dose, six 

additional batch tests were performed. A fluoride concentration of 1,000 mg/L (52.6 mM) 

was maintained with 500 mg/L (8.20 mM) and 1,000 mg/L (16.4 mM) bicarbonate 

concentration, 20 mg/L sulfate (0.21 mM), ad 1% salinity (10,000 mg/L as NaCl). 

Cerium dose (12.50, 25.0 and 50.0 mM) was increased for at the two bicarbonate 

concentrations. Table 11 summarizes the batch test done to evaluate the effect of 

increasing cerium dose, and bicarbonate concentrations. 
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Table 11: Experimental matrix evaluate the effect of cerium dose and bicarbonate 

concentration 
 

# 
Fluoride 

(mg/L) 

Fluoride 

(mM 

HCO3
-
 

(mg/L) 

HCO3
-
 

(mM) 
Cerium Dose (mM) 

 

1 1,000 52.6 500 8.20 12.5 25.0 50.0 

2 1,000 52.6 1,000 16.4 12.5 25.0 50.0 

 

 

 

 

3.2.5. Batch Tests for Actual Industrial Wastewater 

 
Coagulation tests were performed at room temperature using a Phipps and Bird 

six-plate stirrer. One hundred mL of the industrial wastewater from Radian Chemicals 

(Kingwood, Texas) were transferred to 1-liter glass beaker, and the amount of cerium 

chloride was then added, while mixing at 100 rpm for complete mixing. After the rapid 

mixing at 100 rpm, the stir setting was reduced to slow mix, at 30-33 rpm for 20 minutes 

to allow flocs formation. Right after slowly mixing, samples were allowed to settle for 30 

minutes and were transferred into 50-mL plastic vials and placed in centrifuge Sorvall 

Legend RT centrifuge (Thermo Fisher Scientific Inc., USA) at 2500 rpm for 5 minutes. 

Decant volumes were transferred to 100-mL plastic bottles for storage and filtered 

through a 0.20 um Whatman glass fiber filter. Filtered samples were analyzed for the 

compounds of interest. 

 

 
 

3.3. Media Impregnation and Column Testing for Phosphate Removal 

 
Activated carbon (F-400, Calgon Carbon), natural zeolite (Bear River Idaho) and 

anthracite were used as a media for Sorbx-100 impregnation in the screening adsorption 
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tests. These tests were performed to investigate the removal of phosphate from waters 

using media impregnated with cerium chloride. 

 

 
 

3.3.1. Granular Activated Carbon and Anthracite Preparation 

 
Five hundred milliliters of media were rinsed thoroughly ten times with distilled 

water. The rinsed media was placed in clean trays lined with aluminum foils and were 

covered. All media were air dried for 24 hours. Desired amount of Sorbx-100 (Table 12) 

were mixed, using a wooden spoon, with 100 ml of activated carbon and anthracite, 

separately. Some media were also treated with 0.10 N KOH to increase the pH and 

therefore convert cerium chloride to cerium oxide. A portion of the media was also 

heated to 400ºC and at 600ºC for 30 minutes. The impregnated materials were air-dried 

for 24 hours (Table 12). For some effluent samples, the concentration of cerium in the 

effluent was determined by inductively coupled plasma (ICP), to establish if cerium was 

leaching out of the column materials. 

 

 

3.3.2. Column Testing with Impregnated Media for Phosphate (PO4
-3 

as P) 

Removal 

To test the capability of the impregnated media to adsorb contaminants, column 

tests were performed. The desired amount of media was placed in a plastic burette (1- 

inch OD) containing a small amount of glass beads at the bottom to support the Sorbx- 

impregnated media. Synthetic phosphate solution was then fed to the columns using a 

peristaltic pump (Cole Parmer, Chicago, Illinois).  The effluent solution was then 
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collected for analysis. It was assumed that Sorbx-100 was fully attached to the media, 

since Sorbx-100 solution fully covered or adsorbed onto the media. Three parts per 

million or 3 mg/L of phosphate (PO4
-3  

as P) was used as feed for the column testing. 

Table 12 shows the techniques used to prepare the media used in the three 

columns. Column surface loading rate, SLR, of 5 gal/sq.ft∙min was used to simulate 

loading used in full-scale filtration systems for water and wastewater treatment; typical 

surface loading rates ranges from 4-8 gal/sq.ft∙min(Metcalf & Eddy, 2014) 

Table  12:  Media  Preparation  for  Column  Testing  Using  Activated  Carbon and 

  Anthracite, and Natural Zeolite   

Preparation 
Parameter  

 

#1 #2 #3 #4 #5 
 

 

 

Media Content 

Preparation 
None Sorbx-100 

Sorbx-100 

0.10 N KOH 

Sorbx-100 

0.10 N KOH 

Sorbx-100 

0.10 N KOH 
 

 

0.10 N KOH 

Volume (mL) 
None None 15 15 15 

Sorbx-100 

Volume (mL) 
None 15 15 15 - 

Sorbx-100 

Concentration 

(M) 

Media 

Drying Method None 
Air-dried

 
(24-hr) 

Air-dried 

(24-hr) 

Air-dried 

(24-hr) 

Oven-dried 

(24-hr) 

Furnace-Drying 

Temperature (ºC) 
None None None

 
400ºC 

(30 min) 

600ºC 

(30 min) 
 

 

None 2.09 2.09 2.09 0.40 

GAC 

Anthracite 
GAC 

Anthracite 
GAC 

Anthracite 
GAC 

Anthracite 
GAC 

Zeolite 
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Figures 4a-4c shows no considerable external physical changes with activated 

carbon with the addition of Sorbx-100 and after furnace calcinations at 400ºC. 

Subsequent to adding KOH and Sorbx-100 to anthracite, the anthracite showed 

significant aggregation of the media (Figure 4e-4f). After heating the anthracite media at 

400 ºC for 30 minutes, a significant amount was lost and a brownish precipitate was 

formed on the anthracite media. A hydraulic retention time (HRT) of 0.60 to 0.80 min 

was maintained throughout the column testing. 

 

 

Figure 4: Media preparation with different reactants. a) virgin GAC; b) GAC with KOH and Sorbx-100; c) 

GAC after furnace dry at 400 
o
C; d) virgin anthracite; e) anthracite with KOH and Sorbx-100; f) anthracite 

after furnace dry at 400 
o
C. 



www.manaraa.com

48  

3.3.3. Modifications on Initial GAC Preparation and for Zeolite Preparation 

About 200 g of zeolite and activated carbon were washed ten times with distilled 

water. After rinsing, the media was soaked in 0.4 M of Sorbx-100 with (5% w (Sorbx- 

100)/w (GAC or zeolite, 5%). The excess reagent was then removed by filtering the mix 

through a coffee filter.  Next the media was dried over night at 105
0
C and then placed in 

a furnace at 600
0
C for 30 minutes. Similar procedure has been used by Zhang et al. 

 

(2011). This media preparation is shown in Table 1 as preparation #5. Modified 

preparation for GAC and natural are shown on Figures 5 and 6. Figure 7 shows the 

column set-up for the modified column design with 1.20 min HRT and 2.20 min HRT for 

zeolite and activated carbon media. 

 

 

Figure 5: Media preparation with modified media preparation with 0.4 M Sorbx-100 5% (w/w) with zeolite. 

a) virgin zeolite; b) zeolite with Sorbx-100 anthracite after furnace dry at 600°C. 
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Figure 6: Media preparation with modified media preparation with 0.4 M Sorbx-100 5% (w/w) with 

activated carbon. a) virgin activated carbon; b) activated carbon with Sorbx-100 anthracite after furnace 

dry at 600°C. 

 

 

 

Figure 7: Modified column design and preparation set-up. a) virgin set-up (left) and modified zeolite (right) 

with HRT of 1.2 min; b)  modified activated carbon (left) and modified zeolite (right) at HRT of 2.2 min. 
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3.4. Materials 

 
3.4.1. Solutions 

 
3.4.1.1. Synthetic Fluoride Wastewater 

 
ACS reagent grade sodium fluoride (NaF) salt (VWR Scientific), anhydrous 

sodium phosphate (Na2HPO4) powder (J.T. Baker), sodium nitrate (NaNO3) salt (EMD), 

potassium sulfate (K2SO4) salt (EMD), and sodium bicarbonate (NaHCO3) powder were 

used to prepare 10,000 mg/L stock solutions of fluoride, phosphate, nitrate, and 

bicarbonate in 1 liter of fluoride-free (distilled) water, respectively. ACS grade sodium 

chloride (NaCl) salt was used to prepare 330,000 mg/L saline solution in 1 liter of 

distilled water. 

The use of distilled water was needed because the Las Vegas tap water contains 

fluoride, added intentionally, and fluoride is not removed during deionization by the 

Environmental Engineering Laboratory. 

 

 
 

3.4.1.2. Synthetic Phosphate Water 

 
ACS reagent grade of anhydrous sodium phosphate (Na2HPO4) powder (J.T. 

Baker) was used to prepare 1,000 mg/L stock solutions of phosphate in 1 liter distilled 

water. 
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3.4.1.3. Industrial Wastewater 

 
Experiments were done with sulfidic caustic solutions taken from Radian 

Chemicals, Inc. (Kingwood, Texas). The initial pH of the industrial wastewater was 13. 

The industrial wastewater from oil-refining industry was analyzed prior to the addition of 

cerium chloride. Industrial wastewater characteristics used for the fluoride experiments 

with cerium chloride is seen on Table 13. 

Table 13: Industrial wastewater characteristics 
 

Constituent Concentration Unit 

pH 13 – 14 - 

Sulfate 16,000 – 17,000 mg/L 

Total Alkalinity 99,500 – 100,000 mg/L as CaCO3 

Fluoride 40 – 50 mg/L 

Soluble COD 20,000 mg/L 

 

 

3.4.1.4. Cerium Chloride Solution 

 
Molycorp, Inc. provided (Mountain Pass, CA) cerium chloride (i.e. SORBX-100) 

solutions for this research. The solution has a pH of 3.0 to 4.0 with specific gravity of 1.4 

to 1.6 g/mL. Sorbx-100 is composed of 65-69 % by weight of water and 31-35 % by 

weight of rare-earth chloride. For the entire batch testing, a concentration of 2.09 M as 

cerium (III) at a pH of 3.20 was used. The computation of the concentration of the 

solution followed the equations: 
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 a     Concentration    
g 
  =  Specific Gravity  × % Weight  %   × 1000 

L 

 b Concentration as Ce  III    M  
g 

=  Concentration         × 
L 

1 mole of CeCl3 

246.48     
g      

CeCl 

1 mole of Ce (III) 
× 

1 mole of CeCl3 

mole 3 

 c Concentration as Ce   III    M   =  2.00 to 2.09 M as Ce (III) 
Equation 12: Stock solution calculation for cerium chloride solution. (a) Conversion of weigh-to-weight 
ratio to weight-to-volume. (b) to (c) Conversion of concentration to molar ratio as cerium (III). 

 

 

 
3.4.2. Analytical Methods 

 
3.4.2.1. pH Measurement 

 
Final pH of all solutions was measured using AR 10 Fisher Scientific pH meter. 

The pH meter was calibrated using a two-point calibration using pH 4 and pH 7 buffers, 

and pH 7 and pH 10 buffers. 

 

 
 

3.4.2.2. Orthophosphate, Nitrate, and Sulfate Analyses 

 
For phosphate measurements, USEPA method 8048 (Ascorbic Method), using 

PhosVer 3 power pillows, was used. The detection range for this method is between 0.02 

to 2.50 mg/L PO4
-3

. Nitrate was measured using Method 10020 (Chromotopic Acid 

Method) for high range nitrate concentrations (0.20 to 30.0 mg/L NO3-N). Sulfate was 

measured using USEPA method 8051 (Turbidimetric Method) using Hach SulfaVer4 

powder pillows for sulfate concentrations (0 to 70 mg/L SO4
-2

). All analyses were done 

spectrophotometrically using Hach DR 5000 spectrophotometer. Accuracy of all 

methods was checked by using standard solutions of the compounds of interest. 
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3 

Concentrations measured in standards were less than 5% differential of the expected 

concentration. 

 

 
 

3.4.2.3. Fluoride Analysis 

 
Fluoride concentrations were determined spectrophotometrically using Hach DR 

5000 spectrophotometer using USEPA Method 8029 (SPADNS Method). This method 

utilizes SPADNS reagent solution and the method detection range is 0.02 to 2.00 mg/L. 

This method provided an R
2  

= 0.998 for fluoride detection following standard calibration. 

 

 
3.4.2.4. Total Alkalinity as Bicarbonate 

 
Alkalinity was determined by titration method using Standard Methods for the 

Examination of Water and Wastewater and Hach Method 8221 for Total Alkalinity. The 

following equation was used to calculate total alkalinity: 

Alkalinity as HCO−
 

volume of titrant  ml   × normality of titrant  ×  50, 000 
= 

volume of sample (mL) 

Equation 13: Total alkalinity measurement and calculation as calcium carbonate 
 

 

 

 
In addition, by considering this equation for alkalinity as bicarbonate: 

CaCO 3  +  H2O  +  CO2    ↔ Ca(HCO3)2 

Equation 14: Stoichiometric equation of calcium carbonate with addition of water, and carbon dioxide to 
calcium bicarbonate. 
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Therefore, one mole of Ca(HCO3)2equals to one mole of CaCO3 and the 

conversion is as follows: 

−    
mg mg 

Alkalinity as HCO3        L     
= 1.22  × Alkalinity as CaCO3       L  

  
Equation 15: Conversion of alkalinity as calcium carbonate (mg/L) to alkalinity as bicarbonate (mg/L). 

 

 

 

 
3.4.2.5. X-Ray Fluorescence (XRF) Detection 

 
X-ray fluorescence is an x-ray analytical method that is commonly used for 

chemical analyses of sediments, rocks, and minerals. The various media preparations 

were sent to Molycorp, Inc. for XFR analysis to identify rare-earth metal formations. 

However, the exact method performed for XRF analysis is unknown. 

 

 
3.4.2.6. Trace Cerium Analysis 

 
Inductively coupled plasma (ICP) is an analytical method that measures trace 

elements, particularly metals, in aqueous solutions (Batsala et al., 2012). Effluent samples 

were sent to Molycorp, Inc. for ICP analysis to identify, if cerium leaches out of the 

column. Samples analyzed were from column #5 for GAC preparation with 0.40 M 

Sorbx-100 and 1.20 min HRT. Since samples were sent to Molycorp, exact method used 

for measuring tracer cerium concentrations is unknown. 
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3.5. Quality Assurance and Quality Control 

 
3.5.1. Quality Assurance 

 
The following procedures were implemented to assure quality and maintain the 

integrity of the samples. 

a. All samples were refrigerated and placed in 4ºC when not in use. 

 
b. All samples are labeled accordingly based on the batch test with date and 

sampling number. 

c. To assure integrity of stock solutions, stock solution measurements were done 

prior to the batch test. All stock solutions are disposed of in the correct waste bin. 

d. All glassware were soaked in Micro-90 cleaning solution, rinsed, and then rinsed 

three times with distilled water prior to use. 

 

 
 

3.5.2. Quality Control Measures 

 
For all batch tests, duplicate runs were done for all samples to reduce the 

uncertainty in analysis. Analytical measurements were performed for all runs to ensure 

the quality of the data. 
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CHAPTER 4: REMOVAL OF HIGH LEVELS OF FLUORIDE FROM WATERS 

USING CERIUM CHLORIDE 

 

 
 

RESULTS AND DISCUSSION 

 

 

 
 

4.1. Batch Test Results for Central Composite Design 

 
4.1.1. CCD Model Results 

 
Preliminary batch tests were performed to support a CCD investigation of the 

major variables that affect fluoride removal from water by cerium chloride. Table 14 

shows the experimental data points used for the CCD surface design models including the 

experimental responses (i.e. obtained from batch tests) and the predicted response (i.e. 

obtained from the CCD model). 
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Table 14: Experimental data points and response used in Central Composite Design 

with predicted fluoride removal 
 

Run 
a 

 

pH 
Fluoride 

(mg/L) 
Dose 

(mM) 
Molar Ratio 

(Ce/F) 
Experimental 

Response 
b 

Predicted 

Response 

1 -1 (2.06) -1 (11) 1 (25.0) 45.0 44.3 36.3 

2 -1 (2.08) 1 (970) 1 (25.0) 0.5 23.7 35.2 

3 0 (4.83) 0 (105) 0 (12.5) 2.3 79.6 82.7 

4 1 (6.58) 1 (1,000) -1 (6.25) 0.1 42.7 52.9 

5 0 (5.01) 0 (105) -1 (6.25) 1.1 74.5 78.9 

6 1 (6.32) -1 (10) 1 (25.0) 47.5 62.3 73.2 

7 -1 (2.11) 0 (103) 0 (12.5) 2.3 46.8 48.7 

8 0 (4.84) 0 (105) 0 (12.5) 2.3 72.9 82.7 

9 -1 (2.35) 1 (948) -1 (6.25) 0.1 29.2 20.5 

10 0 (4.83) 0 (105) 0 (12.5) 2.3 83.0 82.7 

11 0 (4.78) 0 (105) 1 (25.0) 4.5 96.9 83.7 

12 0 (4.84) 0 (105) 0 (12.5) 2.3 84.7 82.7 

13 0 (4.84) 0 (105) 0 (12.5) 2.3 75.6 82.7 

14 0 (4.91) 1 (943) 0 (12.5) 0.3 79.3 67.4 

15 1 (6.38) 1 (965) 1 (25.0) 0.5 89.8 88.7 

16 1 (6.40) -1 (10) -1 (6.25) 12.4 87.4 78.4 

17 0 (4.86) -1 (11) 0 (12.5) 22.3 77.4 80.5 

18 -1 (2.06) -1 (10) -1 (6.25) 11.9 59.0 62.3 

19 1 (6.51) 0 (91) 0 (12.5) 2.6 94.0 83.3 

20 0 (4.84) 0 (105) 0 (12.5) 2.3 83.0 82.7 

a – Two replicates were performed for runs 1 to 20 

b – Average of two replicates are presented for runs 1 to 20 
 

 

 

 

 

 

Listed in Table 14 are the un-coded and coded values including measured 

concentrations. Since cerium chloride is acidic (pH=3.2), pH depression was anticipated 
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and pH was adjusted using 0.10 N potassium hydroxide (0.10 N KOH). All pH 

measurements, seen on column 1, are well within 5% standard deviation of the 

anticipated levels. The experimental initial fluoride concentrations are listed in column 2; 

all measured fluoride concentrations are within 5% standard deviation as well. 

Experimental and predicted responses are shown in columns 6 and 7. 

 
In this study, the highest fluoride removal (96.9%) is obtained at a pH of 4.78 to 

5.0, for an initial fluoride concentration of 105 mg/L (5.53 mM), and at cerium dose of 

12.5 mM (Ce/F ratio of 4.5). Once all the experimental data were logged, Minitab and 

SAS JMP were used to predict the fluoride removal. In general, the results show that the 

predicted responses are lower than the experimental values, particularly for results for a 

pH of 4.75 and cerium doses of 12.50 and 25.0 mM. Furthermore, the lowest removal is 

achieved at the lower pH of 2 and cerium dose of 12.5 and 25.0 mM, independent of the 

initial fluoride concentration. In comparison, the model predicted similar fluoride 

removal at lower pH (<4.75). However, in some cases, a lower response (i.e. fluoride 

removal) is predicted compared to the actual removal from the batch experiments. The 

model cannot predict other reactions, other than direct fluoride removal with cerium. 

Table 15 lists all the computed coefficients for the response equation used to 

predict fluoride removal in water with characteristics similar to that commonly found in 

industrial operations. 
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Table 15: Estimated regression coefficients of the quadratic model for the Central 

Composite Design model (1) for fluoride removal 
 

Term Source Coefficient Value P-value
1 

Intercept Constant b0 82.716364 <0.0001 

pH X1 b1 17.32 0.001 

Concentration X2 b2 -6.57 0.089 

Cerium Dose X3 b3 2.42 0.503 

pH*Concentration X1X2 b12 4.15 0.312 

pH*Cerium Dose X1X3 b13 5.275 0.206 

Concentration*Cerium Dose X2X3 b23 10.175 0.026 

pH*pH X1X1 b11 -16.69091 0.031 

Concentration*Concentration X2X2 b22 -8.740909 0.218 

Cerium Dose*Cerium Dose X3X3 b33 -1.390909 0.838 

1 - P, critical = > 0.05, non-significant factors 
 

 

 
 

The finalized response equation with the coefficients based on the estimated 

regression coefficients (Table 15) from the CCD model to predict fluoride removal is: 

Removal (%) =  82.72 +   17.32 × pH   −   6.57 × Fluoride   +   2.42 × Dose  

−   16.69 × pH2    −   8.74 × Fluoride2    −   1.39 × Dose2  

+   4.15 ×   pH × Fluoride    +   5.28  pH × Dose    + [10.18 

×   Fluoride × Dose ] 
Equation 16: Predicted surface response equation for the CCD model for fluoride removal efficiency using 

the uncoded units. 

 

 

 

The estimated regression coefficients show the major impact of each parameter 

and interaction of each parameter with each other in predicting fluoride removal. The 

coefficients for each term determine the overall effect on fluoride removal. However, to 
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fully identify the significance of each factor, it is necessary to evaluate the correlation of 

the model with desired statistically significant P-values. P-values of not more than 0.05 

was chosen based on previous CCD models for contaminant removal (Olmez, 2009; 

Jafari et al., 2014) 

The analysis of variance (ANOVA) between linear, quadratic, and two-way 

interactions of each variable is listed on Table 15.As stated earlier, major variables 

affecting fluoride removal are pH, coagulant dose, and the initial fluoride concentration. 

Based on the p-values, the only significant variable, at the chosen level of significance, is 

pH (0.001<P-value<0.05). Cerium dosage and initial fluoride concentration show much 

higher P-values. Therefore, according to the model, fluoride concentration and cerium 

dose have a lower impact on fluoride removal when cerium chloride is used as the 

coagulant. To determine the sensitivity of the variables on the predicted fluoride removal 

response, the CCD was rerun and re-evaluated excluding linear, quadratic and two- 

interacting factors with P-value > 0.05 to obtain a revised CCD model. Table 16 shows 

the percent difference calculation between experimental responses, (i.e. obtained from 

batch tests), predicted responses (i.e. obtained from the CCD model), and predicted 

responses from revised CCD model. 
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Table 16: Percent differences between experimental responses and predicted responses 
 

 

 
Run Experimental 

CCD Model (1) CCD Model (2) (1) and (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 – % difference between experimental response and the predicted response 

2 – % difference between CCD models 
 

 

 

 

 

Experimental and predicted responses (i.e. obtained from initial and revised 

model are shown in Table 16. CCD model (1) is the first developed model including both 

 Predicted Difference
1 Predicted Difference

1 Difference
2 

1 44.3 36.3 20.0% 39.4 11.7% 8.3% 

2 23.7 35.2 39.0% 46.6 65.2% 28.0% 

3 79.6 82.7 3.8% 80.7 1.4% 2.5% 

4 42.7 52.9 21.4% 56.1 27.1% 5.8% 

5 74.5 78.9 5.7% 78.3 4.9% 0.8% 

6 62.3 73.2 16.0% 74.1 17.2% 1.2% 

7 46.8 48.7 4.0% 40.6 14.2% 18.2% 

8 72.9 82.7 12.6% 80.7 10.1% 2.5% 

9 29.2 20.5 34.9% 21.4 30.6% 4.3% 

10 83.0 82.7 0.3% 80.7 2.8% 2.5% 

11 96.9 83.7 14.6% 83.1 15.3% 0.8% 

12 84.7 82.7 2.4% 80.7 4.8% 2.5% 

13 75.6 82.7 9.0% 80.7 6.5% 2.5% 

14 79.3 67.4 16.2% 74.1 6.8% 9.5% 

15 89.8 88.7 1.3% 81.3 10.0% 8.7% 

16 87.4 78.1 11.2% 89.6 2.5% 13.7% 

17 77.4 80.5 4.0% 87.3 12.0% 8.0% 

18 59.0 62.3 5.5% 54.9 7.1% 12.6% 

19 94.0 83.3 12.0% 75.2 22.2% 10.2% 

20 83.0 82.7 0.3% 80.7 2.8% 2.5% 
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significant and non-significant factors. CCD model (2) is the revised CCD model where 

non-significant factors were removed. Columns 4 and 6 show the percent differences 

between the experimental response and the CCD models. Column 7 shows the percent 

difference between the two developed CCD models. For both CCD models (1) and (2), 

the modified model had the highest percent difference. Predicted fluoride removal 

responses from CCD model (1) and CCD model (2) (35.2% and 46.6%, respectively) 

were higher compared to the actual removal (23.7%) obtained from the batch 

experiments. Comparing both developed CCD models, the modified model has the 

highest (28%) difference. Since both CCD models show relatively the same differences 

from the experimental data, removing the non-significant factors have a minimal impact 

and both equations can then be used to estimate fluoride removal using cerium chloride 

from industrial wastewaters. Table 17 lists all the computed coefficients for the revised 

response equation for CCD model (2). 

 

Table 17: Estimated regression coefficients of the quadratic model for the revised 

Central Composite Design model (2) for fluoride removal 
 

Term Source Coefficient Value P-value
1 

Intercept Constant b0 80.69 <0.0001 

pH X1 b1 17.32 0.0003 

Concentration X2 b2 -6.57 0.0926 

Cerium Dose X3 b3 2.42 0.5169 

Concentration*Cerium Dose X2X3 b23 10.175 0.0254 

pH*pH X1X1 b11 -22.77 0.0006 

1 - P, critical = > 0.05, insignificant factors 
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The revised response equation to predict fluoride removal is shown below: 

Removal  %   =  82.72 +   17.32 × pH   −   6.57 × Fluoride   −   22.77 × pH2  

+    2.42 × Dose   + [10.18 ×   Fluoride × Dose ] 

Equation 17: Predicted surface response equation for the CCD model (2) for fluoride removal 
 

 

 
In both, the original and the revised model cerium dosage and initial fluoride 

concentration show much higher P-values (>0.05) than for pH. Therefore, according to 

CCD models, fluoride concentration and cerium dose factors have a lesser impact on 

fluoride removal when using cerium chloride. The developed CCD model for this study 

estimated lower R-squared and adjusted R-squared values of 0.8615 and 0.7368 (Table 

18), respectively. Excluding all non-significant factors from the previous model, the 

revised model has R-squared and adjusted R-squared values of 0.7884 and 0.7128 (Table 

18), respectively. 

 

Table 18: Comparison of R-squared and adjusted R-squared values 
 

Source R-squared Adjusted R-squared 

CCD Model (1) 0.8615 0.7368 

CCD Model (2) 0.7884 0.7128 

 

 

Even though both models are statistically significant, 25% of the total variation 

cannot be explained by the quadratic model. Initial CCD model had higher R-squared and 

adjusted R-squared values. Therefore, the initial CCD model is better at predicting 

variations of the data compared to the revised CCD model. 
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There exist several reasons for the variation between the CCD model prediction 

and the actual fluoride removal obtained. The cerium dosage added took into 

consideration only the stoichiometry for the formation of cerium fluoride (CeF3); 

complex formation and the formation of cerium hydroxide and cerium carbonate were not 

accounted for. Therefore, the predicted fluoride removal response is lower than the 

experimental response. This shows the limitation of the CCD model. It is known that 

cerium chloride addition promotes the formation of cerium hydroxide and or cerium 

carbonate.  There have been reports of the adsorption of fluoride to oxides and 

hydroxides of REEs (Na & Park, 2010; Raichur & Basu, 2001). Wood (1990) has 

identified formation of complexes with lanthanides with sulfates, phosphates, fluorides, 

hydroxides, and bicarbonates (Wood, 1990). Jafari et al. (2014) used a RSM – Box- 

Behnken Model – for process optimization for fluoride removal from drinking water 

using seed extract. The model predicted R-squared and adjusted R-squared values of 0.99 

and 0.98, respectively. A CCD was previously developed in hexavalent chromium 

removal in IX brine solutions using calcium polysulfide (Pakzadeh & Batista, 2011). The 

CCD model estimated an R-squared and adjusted R-squared of 0.9655 and 0.9344, 

respectively. Olmez (2009) also used RSM for optimization of hexavalent chromium 

reduction by electro-coagulation. The response surface model predicted an R-squared of 

0.875 (Olmez, 2009). The model developed for this study produced lower R-values 

compared to most of the previous studies using the RSM – CCD model. 

The analysis of variance (ANOVA) and lack of fit responses for the predicted and 

experimental data are listed on Table 19. 
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Table 19: Analysis of variance for the developed CCD model for fluoride removal 

efficiency 
 

Source F-Value F-Critical P-Value
2
 

CCD Model (1) 6.91 3.020 0.003 

CCD Model (2) 10.4353 2.958 0.0002 

2 – P, critical = > 0.05    

 

 

Based on the calculated responses of the CCD models, F-values are significantly 

greater than the F-critical. Therefore, both equations can confidently predict real 

variances. All P-values are less than the P-critical (<0.05) therefore, both models are 

statistically significant. 

 

 
 

4.1.2. Contour Plot from CCD Model 

 
Using the quadratic equation generated for with the CCD model and related 

coefficients, contour plots can be developed to show fluoride removal forecast under 

various conditions.. Contour plots were created based on the CCD model (1) to predict 

fluoride removal at varying pH, cerium dose, and initial fluoride concentrations. The 

contour plots were based on the conditions where the highest experimental fluoride 

removal was achieved. Disregarding initial fluoride concentrations, the data indicated that 

doses of 12.50 and 25.0 mM and at pH of 4.75 to 5.00, had the highest (>80%) removal. 

However, in generating the plots, increasing fluoride concentration were considered. 
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Figure 8-9 show the predicted contour plots as a function of initial fluoride 

concentration, pH, and at fixed cerium doses of 12.5 mM (Figure 8) and 25.0 mM (Figure 

9). Consequently, a contour plot, solely by fixing the pH, was created. Figure 10 shows 

the prediction contour plots as a function of initial fluoride concentration, increasing 

cerium dose, and at fixed pH of 4.75. 
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Contour Plot of Removal Efficiency vs Fluoride, pH 
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Figure8: Contour plot of predicted fluoride removal efficiency as a function of initial fluoride concentration 

at cerium dose of 12.50 mM and 1% salinity. 
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8 

Contour Plot of Removal Efficiency vs Fluoride, pH 
 

 
 

75 0 90 95 90 90 
85 

6 
95 

80 95 

90 

90 90 
85 90 

5 75 

 
85 

80 

 

 
85 85 

 
 

80 80 
 

80 
4 

70 75 
75 

 
65 

70 
 

3 60 65 

75 75 

 
70 

70 

65 
65 

60 
60 

55 
55 60 

 

50 55 

4045 50 
2 

55 50 

50   45 

45 40 

200 400 600 800 1000 

Initial Fluoride Concentration (mg/L) 
 
 
 

Figure 9: Contour plot of predicted fluoride removal efficiency as a function of initial fluoride 

concentration at cerium dose of 25.0 mM and 1% salinity. 
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Figure 10: Contour plot of predicted fluoride removal efficiency as a function of initial fluoride 

concentration at pH level of 4.75 and 1% salinity. 



www.manaraa.com

70  

  Cerium Dose = 6.25 mM Cerium Dose = 12.5 mM Cerium Dose = 25 mM 

Effect of pH and Cerium Dose on  Fluoride Removal 
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4.2. Effect of pH and Cerium Dose on Fluoride Removal 

 
The optimal operating pH plays a significant role in fluoride removal by 

precipitation as previously determined by other studies (Tomar & Kumar, 2013; Raichur 

& Basu, 2001).  The CCD results helped identify which variables impact fluoride 

removal. Fluoride removal was evaluated with changing pH, while adding different doses 

of cerium. Fluoride removal efficiency, as a function of pH and increasing cerium dose is 

depicted in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11: Fluoride removal efficiency as a function of pH and differential cerium dose (6.25, 12.5, and 25 

mM), and with 1% salinity. 

 

 

 

Three different doses were evaluated for fluoride removal while increasing the pH 

from 2 to 9.50, at a constant fluoride concentration of 1,000 mg/L (956 

mg/L).Independent of the dosage of cerium applied, the highest removal of fluoride was 
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achieved at low pH values (between 3 and 5). At higher pH values, fluoride removal 

decreased. For the same pH value, a higher cerium dose resulted in higher fluoride 

removal. By increasing the pH from 4 to 9.25, fluoride removal was reduced to 30%. At a 

cerium dose of 12.50 mM (Ce/F=0.25), 70% removal was achieved at a pH of 3.0. No 

additional removal was achieved by increasing the pH to 7. However, the graph showed a 

dropping fluoride removal to 60% at pH 8.5. 

Based on the experimental results from the CCD model, the highest removal was 

achieved at a pH of 4.78, at 105 mg-F/L (5.53 mM), and a cerium dose of 25.0 mM 

(Ce/F=4.52).Batch test results, run for these conditions, support the CCD model. A 98% 

removal of fluoride was, indeed, achieved at higher dose (25.0 mM; Ce/F=0.50), 

validating the model.The fluoride removal efficiency at 6.25 mM (Ce/F=0.12), 12.50 mM 

(Ce/F=0.25), and 25.0 mM (Ce/F=0.50) at pH <3, were 36%, 42%, and 80%, 

respectively. Based on the predicted responses (Table 14), the range of removal that can 

be achieved at that particular pH is from 35% to 50%. Therefore, both sets of 

experiments showed coherence with predicted fluoride removal. 

 

 
 

4.3. Effect of Dose and Fluoride Concentration on Fluoride Removal 

 
In this study, it was determined that the amount of cerium added and the final pH 

has an impact on fluoride removal; however, the impact of initial fluoride concentration 

and cerium dose needed further investigation. Therefore, additional batch experiments 

were performed. Fluoride removal efficiency based on the molar ratio (i.e. cerium dose) 

and initial fluoride concentration are plotted in Figure 12. 
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Figure 12: Fluoride removal efficiency as a function of Ce/F molar ratio and differential initial fluoride 

concentrations with 1% salinity, sulfate concentration of 20 mg/L, and final pH of 4.79 ± 0.24. 

 

 
 

At initial fluoride concentration of 98 mg/L, fluoride removal reached 90% at a 

molar ratio of 1.20 and by increasing the dose, no significant improvement was observed. 

At high fluoride concentrations, which are commonly found in industrial wastewater, a 

96% removal was achieved at molar ratio of 0.60. In addition, a 98% removal was 

achieved at a molar ratio of 0.80 (cerium dose of 33.33 mM). Stoichiometrically, it only 

requires 1 mole of cerium for 3 moles of fluoride. Therefore, the data shows, particularly 

at >1,000 mg/L, more than Ce/F = 0.33 is required to achieve higher fluoride removal. 

On the other hand, at concentrations <100 mg/L, it is not advantageous to increase the 

molar ratio passed a Ce/F of 2.0. No additional removal was demonstrated (Figure 12) 

with molar ratio >2.0. 
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Considering the prediction equation, at pH of 4.75, 1,000 mg-F/L, and cerium 

dose of 25 mM (Ce/F=0.50), 75%-80% can only be achieved. This predicted removal was 

less than that achieved experimentally. As previously mentioned, the CCD model cannot 

predict complex lanthanide formation or adsorption to hydroxides (Wood, 1990). 

 

 
 

4.4. Impact of Competing Ions 

 
Sulfate, bicarbonate, nitrate, and phosphate have been found to be the ions that 

typically affect fluoride removal by precipitation with coagulants other than cerium 

chloride (Drouiche et al., 2008; Drouiche et al., 2012; Hu et al., 2005). 

Figure 13 shows the effect of sulfate on fluoride removal for a pH of 4.75, a 

salinity of 1% (10,000 mg/L as NaCl), a fixed fluoride concentration, and a Ce/F ratio of 

0.33. These values represent the typical composition of industrial wastewaters 

contaminated with fluoride. 
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Figure 13: Fluoride and sulfate removal as a function of increasing initial sulfate concentration at initial 

fluoride concentration of 961 mg/L, molar ratio Ce/F of 0.33, 1% salinity and final pH of 4.73 ± 0.15. 

 

 

 
The results show increasing fluoride removal with increasing sulfate 

concentration. The highest fluoride (>90%) removal was achieved for sulfate 

concentrations > 500 mg/L. By increasing the sulfate concentrations from 500 mg/L to 

1000 mg/L, no additional fluoride removal was observed. Remaining sulfate 

concentrations show that sulfate was also removed and corresponded with increased 

fluoride removal. The highest sulfate (80%) removal was observed for the initial sulfate 

concentration of 100 mg/L. The initial hypothesis, in this thesis, was that sulfate would 

suppress fluoride removal because of reported negative impacts of sulfate on fluoride 

removal by adsorption. However, the data show the opposite. Increasing sulfate 

concentrations, up to 500 mg/L promoted increased fluoride removal from 55% (i.e. with 

no sulfate present)  to over 90% at sulfate concentrations >50 mg/L.  One of the 
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4 4 

4 

characteristics of cerium is that if forms many complexes (Wood, 1990). In the presence 

of sulfate ions, the formation of cerium complex, CeSO4
+
, may be observed. 

Furthermore, Wood (1990), in a review of complex formation with REEs, 

concluded that various lanthanide elements (i.e. generally referred as to Ln to signify the 

lanthanide element) form complexes with sulfate; the most common complexes are 

Ln(SO4)2
- 
and LnSO4

+
in groundwater. The literature reveals that in the absence of other 

ions and with predominantly sulfate ions in water, LnSO4
+
would be the dominant species. 

The Ln-sulfate complex, LnSO4
+
, occurs at sulfate concentrations of 10

-4 
M (9.6 mg/L) to 

10
-2 

M (960 mg/L). At sulfate concentrations greater than 10
-2 

M, Ln(SO4)2
-1 

is the 

dominant species (Wedepohl, 1978; Wood, 1990). Wood (1990) cites work by Bilal and 

Koss (1982) and, Sinha and Moller (1983) that proposes the formation of mixed 

complexes, including carbonate (Ln(CO3)nF) and hydroxide  of cerium.  Although there 

is no confirmation of their existence in the literature, the possible formation of such 

complexes of fluoride could be expressed as: 

Ln+3  aq   + SO−2
  aq  →  LnSO+(aq) 

LnSO+  (aq) + F −(aq) → LnSO4F 

Equation 18: Complex formation of lanthanides (expressed as Ln) with sulfate and then with a fluoride ion 
(Haas et al., 1995). 

 

 

 
Similar to what is observed with the addition of coagulants such as alum and 

ferric chloride, when cerium chloride is added to water, it forms cerium hydroxide. 

Therefore, fluoride removal can be explained by two mechanisms, direct precipitation by 

the formation of cerium fluoride (CeF3) and adsorption onto the surface of cerium 
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hydroxide. Tokunaga et al. (2007) has proposed potential mechanisms for fluoride 

removal through ion-exchange and adsorption means onto lanthanum oxide. Other 

researchers have also investigated adsorption mechanisms using REE oxides (Na & Park, 

2010; Raichur & Basu, 2001). Although there is much literature that demonstrates REE 

complex formation (Wood, 1990; Wedepohl, 1978), such as the complexes of cerium 

with sulfate, there is not much information that supports the increased removal of fluoride 

in the presence of high sulfate concentrations. However, a relatively recent study by 

Kovacs et al. (2009) shed some light into the reactions between cerium fluoride and 

sulfate. They found that sulfate decreases the surface charge of the cerium fluoride 

particles enhancing the possibility of coagulation (Kovacs et al., 2009). In this study, the 

results show greater fluoride removal in the presence of sulfate. Independent of the exact 

mechanisms that promoted such outcome; these findings are significant to water 

treatment. For industrial wastewaters with high fluoride, addition of sulfate can promote 

better fluoride removal, using stoichiometric ratio of Ce/F. 

Although many waters contaminated with high fluoride concentration do not 

contain significant amounts of phosphate, the fact that cerium forms strong complexes 

with phosphate supports the investigation of whether phosphate can promote higher 

fluoride removal. Cerium chloride has been shown to remove phosphate extremely well 

from wastewaters containing high and low concentrations of phosphate (Strileski, 2013). 

Figure 14 shows the effect of phosphate on fluoride removal for a pH of 4.75, 1% 

(10,000 mg/L) salinity, a fluoride concentration of 1,000 mg/L, and a Ce/F of 0.33. 
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Figure 14: Fluoride and phosphate removal as a function of increasing initial phosphate concentration at 

initial fluoride concentration of 991 mg/L, molar ratio Ce/F of 0.33, 1% salinity and final pH of 4.54 ± 0.3. 

 

 

 
 

The removal efficiency of fluoride increased following the increased phosphate 

concentration in water (Figure 14). The highest fluoride (98%) removal efficiency was 

achieved for initial phosphate concentration of 200 mg/L. Highest phosphate (98%) 

removal was achieved for initial phosphate of 200 mg/L. 

One of the most important characteristic of lanthanides is their ability to react 

with phosphate to form mixed complexes (Wood, 1990). In most acidic waters, 

lanthanide reacts with phosphate to form the complex ion, LaH2PO4
2+

(Wood, 1990). 

Mayer and Schwartz (1950) identified the formation of CePO4in natural waters; however, 
 

this finding was not validated and was deemed to be incorrect (Mayer & Schwartz, 1950; 

Wood, 1990). Although there no literature identifying mixed complex formations of 

phosphate and fluoride, one can express the potential formation of such complexes as: 
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4 

 

 
− +2 

Ln+3  aq   +  H2PO4    aq   → LnH2PO4  aq  

LnH2PO+2
  aq  +  2F −(aq) →  LnH2PO4F2 

Equation 19: Equation for lanthanide complexes with phosphate and with fluoride in natural waters (Haas 
et al., 1995). 

 

 

 
Previous studies by Yang et al. (2001) and Islam and Patel (2007) determined that 

presence of phosphates in water inhibits fluoride removal when calcium chloride and 

quick lime (Yang et al., 2001; Islam & Patel, 2007)are used. They identified that for the 

removal of fluoride with quick lime the presence of anions reduced fluoride removal in of 

the order of, phosphate > sulfate > nitrate (Islam & Patel, 2007). 

This is the opposite of that observed for cerium chloride. While coagulants like 

lime are negatively impacted by the presence of phosphate and sulfate, at lower pH 

values and using cerium chloride, higher removals of fluoride are observed in the 

presence of sulfate (Figure 13) and of phosphate (Figure 14). 

Evaluation of phosphate removal shows its decrease in solution corresponding 

with increased fluoride removal. The concomitant removal of phosphate and fluoride 

removal can be explained by two mechanisms, co-precipitation by both simultaneous 

formation of cerium fluoride (CeF3) and cerium phosphate (CePO4) and adsorption onto 

the surface of cerium hydroxide, as previously identified for sulfate. In addition to the 

aforementioned mechanisms, the formation of phosphate complexes provides the 

opportunity for the formation of additional complexes with fluoride and/or adsorption to 

these complexes (Wood, 1990). However, there is very limited literature identifying such 
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Ce 

mixed complex formations for REEs, phosphate and fluoride (Wood, 1990; Wedepohl, 

1978). 

Even though literature suggests REE form complexes, there are no available 

studies identifying the effect of increasing phosphate concentrations in aiding fluoride 

removal. In this research, higher fluoride removal was achieved at higher phosphate 

concentrations. Regardless of the removal mechanism using cerium chloride, in 

wastewaters containing high fluoride, addition of phosphate and sulfate could aid better 

removal as seen in this study. These findings can result in a treatment technology 

enhancement for industrial wastewaters containing high fluoride concentrations. Tables 

20 and 21 show molar concentrations in all batch experiments. 

 

Table 20: Distribution of sulfate, fluoride and cerium for batch tests examining the 

impact of sulfate on fluoride removal by cerium chloride precipitation 
 

 

Fluoride Sulfate 
3+        

 

# 
(mM) Initial 

(mM) 
Final 
(mM) 

Removal 
(%) 

Initial 
(mM) 

Final 
(mM) 

Removal 
(%) 

1 18 53.2 23.92 55.0 - - - 

2 18 53.9 22.21 57.8 0.60 0.23 60.7 

3 18 52.1 20.55 85.9 1.10 0.26 77.3 

4 18 45.8 0.60 98.8 5.70 3.33 41.8 

5 18 47.9 0.88 98.4 10.6 3.31 68.9 
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Table 21: Distribution of phosphate, fluoride and cerium for batch tests examining 

the impact of phosphate on fluoride removal 
 

 

Fluoride Phosphate 

Ce
3+        

# (mM) Initial 
(mM) 

Final 
(mM) 

Removal 
(%) 

Initial 
(mM) 

Final 
(mM) 

Removal 
(%) 

1 18 53.2 23.92 55.0 - - - 

2 18 52.6 22.21 57.8 0.90 0.04 60.7 

3 18 50.0 20.55 58.9 1.77 0.41 77.3 

4 18 50.3 0.60 98.8 8.77 1.11 41.8 

5 18 55.3 0.88 98.4 16.5 0.50 68.9 

 
 

Assuming that REE mixed complexes are formed, either with phosphate or 

sulfate, the data show that both sulfate and phosphate are limiting reactants. Evaluating 

molar concentrations of sulfate (Table 20) and phosphate (Table 21), fluoride removal 

was only achieved if either sulfate or phosphate is greater than 1 mM. As previously 

mentioned, there is no literature suggesting formation of higher form of mixed complexes 

with phosphates and sulfates. Evaluating the final sulfate (Table 20) molar 

concentrations, approximately 3 mM was remained non-reacted for samples 4 and 5. The 

tables do suggest two possible fluoride removal mechanisms: co-precipitation with 

sulfate or phosphate at molar concentrations <1 mM and adsorption onto cerium 

hydroxides, and complexes at molar concentrations >1mM. 

The presence of nitrate in high concentrations in wastewaters containing fluoride 

is not well documented. However, waters from the metal and oil processing industries, 

which may contain fluoride, contain high concentrations of ammonium that can be 

converted to nitrate, depending on the treatment used (Wang et al., 2008). To evaluate the 

impact of nitrate on fluoride removal, nitrate solutions were used. Figure 15 shows the 
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fluoride removal efficiency as the nitrate concentration was increased with following 

water characteristics: initial fluoride concentration of 1,000 mg/L, 1% salinity, pH of 

4.75, and a Ce/F ratio of 0.33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Fluoride removal as a function of increasing nitrogen concentration at an initial fluoride 

concentration of 1,001 mg/L, molar ratio Ce/F of 0.33, 1 % salinity, and final pH of 4.54 ± 0.24.. 

 

 

 

Based on the results, nitrate has no or little effect on fluoride removal. Fluoride 

removals ranged from 57%to 60%. With the addition of cerium chloride, very little 

nitrate removal was achieved. The literature indicated that nitrate only forms weak 

complexes with cerium (Wood, 1990). The most acceptable complex for lanthanides and 

nitrate is LnNO3
+2

. Due to relatively low stability constants, formation of LnNO3
+2

and 

other complexes of nitrates are negligible in most waters (Wood, 1990). 
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The literature also indicates REE forms very weak complexes with chloride. The 
 

acceptable lanthanides and chloride complex is LnCl 
+

 (Wood, 1990). Lanthanide and 
 

chloride complexes are not very stable in natural waters. However, these complexes 

appear in brine solutions with salinities greater than seawater (> 30,000 mg/L)(Wood, 

1990). In this study, the salinity was fixed at 1% (10,000 mg/L as NaCl); therefore, in 

such cases, chloride complexes with lanthanides can be neglected. 

The impacts of carbonate alkalinity on fluoride removal were also evaluated 

because it is known that cerium (III) canform precipitates and complexes (e.g. Ce2(CO3)3 

(s), CeCO3
+
, and Ce(CO3)2

-
) with carbonate(Ferri et al., 1983). Researchers have 

suggested complex formation of LnCO3
+
and LnHCO3

+2 
in natural waters (Wedepohl, 

1978; Wood, 1990; Haas et al., 1995; Cetiner & Xiong, 2008). Cetiner and Xiong (2008) 

identified the complex species, LnCO3
+
and Ln(CO3)

-1
, which can be formed above 

neutral pH(Cetiner & Xiong, 2008). 

Figures 16 and 17 show the impact of bicarbonate on the removal of fluoride for 

a fixed Ce/F ratio and 1% salinity. As the bicarbonate concentration increased, the final 

pH increased from 5.94 for 100 mg/L HCO3
-1

to 8.12for 10,000 mg/L HCO3
-1

. Therefore, 

the removals shown in Figures16 and 17 are for different pH values.  The fluoride 
 

removal was decreasing likely because the cerium was being used to form cerium 

bicarbonate, cerium carbonate and related complexes. 
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Figure 16: Effect of bicarbonate on fluoride removal with an initial fluoride concentration of 974 mg/L and 

Ce/F ratio of 0.33 and with initial bicarbonate concentrations from 50 to 1250 mg/L as HCO 
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Effect of bicarbonate on fluoride removal with an initial fluoride concentration of 952 mg/L and 

Ce/F ratio of 0.33 and with initial bicarbonate concentrations from 500 to 8,900 mg/L as HCO3 

F
in

a
l 

p
H

 

P
e
rc

e
n

t 
R

e
m

o
v
a
l 

P
e
rc

e
n

t 
R

e
m

o
v
a
l 

F
in

a
l 
p

H
 



www.manaraa.com

84  
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The results show that the presence of bicarbonate alkalinity has a negative impact 

on fluoride removal with cerium chloride. With alkalinity less than 200 mg/L, the 

fluoride removal efficiency was effective. However, increasing the alkalinity from 500 

mg/L to 9,000 mg/L, decreased the overall fluoride removal efficiency from 90% to 40%, 

respectively. 

The impact of alkalinity on fluoride removal was also evaluated using varying 

Ce/F ratios. Fluoride removal efficiencies as a function of molar ratio and initial 

alkalinity are depicted on Figure 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Fluoride removal as a function of Ce/F molar ratio and varying initial alkalinities, with constant 

initial fluoride concentration, and 1% salinity. 
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removal was observed. The results show that the presence of alkalinity has a slight 

negative impact on fluoride removal for on stoichiometric Ce/F ratio of 0.33. Increasing 

the cerium dose (i.e. Ce/F molar ratio) above stoichiometric ratio, the overall fluoride did 

increase from 78% to 98% at a molar Ce/F ratio of 0.50. The controlled solution (without 

bicarbonate) showed similar results as the samples with 500 mg/L bicarbonate. A 78% 

removal was achieved for both samples. The fluoride removal in the presence of 500 

mg/L bicarbonate was higher than that for 1,000 mg/L bicarbonate (70% removal). The 

reason for the lower removal of fluoride in the presence of higher alkalinity is a higher 

pH value as shown in Figure 19. 

 

 

 
 

 

 
Figure 19: Final pH solution as a function of Ce/F molar ratio and varying initial alkalinities, with constant 

initial fluoride concentration, and 1% salinity. 

 

 

 

Figure 19 shows that by increasing the molar Ce/F ratio, the pH of the solution 

decreased significantly. Based on these results, cerium chloride consumes a significant 
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amount of alkalinity that resulted in pH depression. The highest achievable fluoride 

(94%-98%) removal for all samples was determined at a molar ratio of 0.50, at which the 

final pH of the solution was reduced to 4.20. This suggests that pH adjustment is 

necessary for wastewaters with high alkalinity. In this study, it was determined that the 

optimal working pH for cerium chloride, to be effective, was 4.75. 

 

 
 

4.5. Testing the Impact of Alkalinity on Fluoride Removal Using an Actual 

Fluoridated-Industrial Wastewater 

To determine the effectiveness of cerium chloride in removing fluoride from 

industrial wastewater, an actual wastewater from the oil reprocessing industry was 

experimented with for fluoride removal in the presence of high alkalinity. The 

wastewater sample had initial fluoride concentration of 41 mg/L, extremely high 

alkalinity (100,000 mg/L as CaCO3), and a pH of 13. Water quality characteristics for 

this wastewater sample are shown in Table 13 (Chapter 3-Materials and Methods). 

A very striking result is obtained when cerium chloride is added to the 

wastewater. A very high amount of sludge is formed as a result of precipitation of 

supposedly cerium hydroxide and cerium carbonate (Figure 20). 
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Figure 20: Sludge production with increasing cerium dose on SCS solution, with initial fluoride 

concentration 41 mg/L. 

 

 

 

The amount of sludge generated increases almost proportionally to the cerium 

chloride added (Figure 21).Figure 22 shows the removal of fluoride with increasing 

cerium chloride. As noted, no fluoride was removed. The reason is the extremely high 

concentration of alkalinity that is using up the cerium to form sludge. 
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Figure 21: Sludge production and distribution, as a function of cerium dose (12.5, 12, 50, 100, and 200 

mM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22: Fluoride removal efficiency as a function of cerium dose, with an initial fluoride concentration 

of 41 mg/L. 
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Even withan increasing dose of cerium chloride (i.e. as Ce (III)), the results 

showed no fluoride removal for this particular wastewater. It has been determined 

experimentally, that the optimal pH for fluoride removal was 4.75. For cerium chloride to 

be effective, pH adjustment is necessary for high alkalinity solutions by using strong 

acids (e.g. sulfuric acid or hydrochloric acid). Alkalinity must first be consumed to bring 

down the pH (<6.50) within the working condition.  Hence, alkalinity has a direct effect 

on fluoride removal when cerium chloride is used. 
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CHAPTER 5: REMOVAL OF PHOSPHATE USING CERIUM CHLORIDE 

IMPREGNATED MEDIA 

 

 
 

RESULTS AND DISCUSSION 

 

 

 
 

Previous studies performed by UNLV using lanthanum chloride (Strileski, 

2013)and others (Na & Park, 2010; Raichur & Basu, 2001; Zhang et al., 2012) have 

demonstrated that REEs remove phosphate very well from water. Preliminary testing 

performed for this research revealed, as expected, that cerium chloride (i.e. Sorbx-100), 

which is chemically very similar to lanthanum chloride, is also an excellent coagulant for 

phosphate removal. Although cerium chloride, in aqueous form, can be directly added to 

waters for this purpose, its impregnation to a solid media would increase its usefulness 

because such media could be used in granular filtration. 

Following are results of column adsorption experiments performed using various 

media (i.e. GAC, zeolite, and anthracite) impregnated with Sorbx-100 for phosphate 

removal. One-hundred milliliters of GAC, anthracite, and natural zeolite were rinsed 

multiple times with distilled water. Once all the media were left to dry for 24 hours, 15 

mL of Sorbx-100 was added to each 100 mL media. Depending on the preparation (Table 

22), 15 mL of potassium hydroxide (KOH) was added and followed by air or oven 

dehydration. Some samples were then placed in a furnace and heated for a specific 

amount of time.  The summarized preparations for the column testing are as follows: 
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Table 22: Media Preparation for Column Testing Using Activated Carbon and 

Anthracite, and Natural Zeolite 
 

 

Preparation 
Parameter  

 

#1 #2 #3 #4 #5 
 

 

 

Media Content 

Preparation 
None Sorbx-100 

Sorbx-100 

0.10 N KOH 

Sorbx-100 

0.10 N KOH 

Sorbx-100 

0.10 N KOH 
 

 

0.10 N KOH 

Volume (mL) 
None None 15 15 15 

Sorbx-100 

Volume (mL) 
None 15 15 15 - 

Sorbx-100 

Concentration 

(M) 

Media 

Drying Method None 
Air-dried

 
(24-hr) 

Air-dried 

(24-hr) 

Air-dried 

(24-hr) 

Oven-dried 

(24-hr) 

Furnace-Drying 

Temperature (ºC) 
None None None

 
400ºC 

(30 min) 

600ºC 

(30 min) 

HRT (min) 0.60- 1.00 0.60- 1.00 0.60- 1.00 0.60- 1.00
 1.20

 
2.20 

All columns were run with an average contact time of 0.6 to 1.0 minute, except 

for the media of preparation 5, which ran with a hydraulic retention time of 1.50 and 2.20 

minutes for zeolite and 1.20 to 1.30 minutes for GAC. Since literature suggested HRT 

affects adsorption, HRT was increased from 1.20 to 2.20 min. However, it was not 

evaluated further. Columns were run with 10 g of prepared media using 1-inch diameter 

plastic column fed with a peristaltic pump. 

None 2.09 2.09 2.09 0.40 

GAC 

Anthracite 
GAC 

Anthracite 
GAC 

Anthracite 
GAC 

Anthracite 
GAC 

Zeolite 
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Adsorption of Impregnated Anthracite 
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5.1. Adsorption of Impregnated Anthracite 

 
Figure 23 shows effluent/influent phosphate concentration ratios (C/Co) relative to 

the bed volumes of phosphate solution passed through the treated anthracite media. 
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Figure 23: Relationship between C/Co and bed volumes passed (anthracite) with feed concentration (Co) of 
-3 

3 ppm PO4 -P (C=effluent concentration, Co=influent/feed concentration). The column was then run with 

an average hydraulic retention time of 0.60 to 1.0 minute. 

 

 

 

The data show that less than 20 bed volumes could be processed before 

breakthrough of phosphate in the effluent. All four treatments types were proven to be 

insufficient to promote significant phosphate removal. Neither the impregnation of 

anthracite with Sorbx-100 and potassium hydroxide, nor the furnace-dried impregnated 

anthracite at 400ºC improves the removal of phosphate. The column reached 

breakthrough after approximately 15 bed volumes. It was observed during anthracite 

media preparation that significant aggregation of the material occurred. It was also 

observed that a large amount of cerium chloride solution that was used for impregnation 
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did not attach well to the media – a large amount of it was retained on the beaker, where 

the media and solution were mixed. Therefore, anthracite impregnation with cerium 

chloride is not a feasible process. As previously mentioned, cerium chloride is very acidic 

with a typical pH around 3.2 to 3.50. One of the weaknesses of anthracite media is its 

susceptibility to acid. In filtration systems, the potential for loss of anthracite material is 

determined by using an acid solubility method (Beverly, 2011). Anthracite is easily 

degraded when in contact with acidic or oxidizing solutions (Beverly, 2011), which 

explains its poor cerium chloride adsorption capacity. 

 

 
5.2. Adsorption of Impregnated Natural Zeolite 

 
Figure 24 shows that zeolite impregnated with Sorbx-100 did not remove phosphate 

well and breakthrough was reached after about 5 bed volumes. 
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Figure 24: Relationship between C/Co and bed volumes passed (modified zeolite preparation) with feed 
-3 

concentration (Co) of 3 ppm PO4 -P (C=effluent concentration, Co=influent/feed concentration). 

 

 

 

The same procedures were followed for the column 5 (preparation #5). Two 

separate runs were performed with HRT of 1.2 min and of 2.0 min. However, even with a 

slower HRT (1.2 min), the column broke through after 5 bed volumes. 

Therefore, Sorbx-100 impregnation of zeolite did not result in media that can be used for 

phosphate removal. 

 

 
 

5.3. Adsorption of Impregnated GAC 

 
Fresh or Sorbx-impregnated granular activated carbon (GAC) were used for the 

column tests. Figure 25 shows no significant increase in bed volumes processed through 

the column for phosphate removal, when using GAC impregnated with Sorbx-100 alone 

under various conditions. However, the results show significant improvement in 
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Adsorption of Impregnated GAC 
(HRT of 0.60 to 1.00 min) 
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phosphate removal when the GAC was heated at higher temperatures that allow for the 

formation of cerium oxide. About 120 bed volumes could be processed before 

breakthrough, demonstrating that impregnation of GAC followed by furnace-dehydration 

at 600ºC is a feasible way to impregnate GAC to be used in filters to remove phosphate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25: Relationship between C/Co and bed volumes passed (GAC) with feed concentration (Co) of 3 

-3 

ppm PO4 -P (C=effluent concentration, Co=influent/feed concentration).The column was then run with an 

average hydraulic retention time of 0.60 to 1.2 (#5) minutes. 

 

 

The results show significant improvement in phosphate removal when the GAC is 

heated at higher temperatures – column #4 at 400ºC and column #5 at 600ºC - that 

allowed for the formation of cerium oxide. The formation of cerium oxide under these 

conditions was confirmed by X-ray diffraction (Figure 26). For column #5, with an HRT 

of 1.20 minutes and furnace-dehydration at 600ºC, approximately 120 bed volumes could 

be processed before breakthrough demonstrating that impregnation of GAC followed by 
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furnace-dehydration at 600ºC may be a feasible way to adsorb cerium to the media and 

use it for the removal of phosphate. Therefore, with modified activated carbon furnace- 

heated at 600°C, at an HRT of 1.20 min, impregnation of GAC with cerium chloride 

seems to be a more feasible approach than for the other media tested. It is important to 

note that larger bed volumes of phosphate solution were processed with the impregnated 

media with somewhat longer HRT values. The impact of retention time on the 

impregnated media deserves further consideration, and it was not evaluated in this 

research. 

For column #5 with an HRT of 1.20 minutes and furnace-dried at 600ºC, the 

effluent samples were analyzed for cerium to determine any leakage. The cerium 

concentration in the effluent was measured using ICP at the Molycorp facility at 

Mountain Pass. Figure 26 shows the tracer cerium analysis for modified GAC 

preparation. 
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Figure 26: Tracer cerium analysis for modified GAC preparation (#5) as a function of phosphate (PO4 

remaining. 
-P) 

 

 

 

After approximately 30 bed volumes, significant amount of cerium washed out of 

the media into the water phase. A significant loss of cerium solution was already 

observed during the preparation of all media. Figure 26 shows that cerium is leaking out 

of the GAC and promoting low phosphate removal.  Although GAC impregnation 

worked better than for the other media, the process attempted does not work well. 

Typical activated carbon has thousands of square feet of internal surface area per gram of 

carbon. This is significantly larger than those of anthracite and zeolite. Even though this 

suggests feasibility for impregnation of GAC with cerium chloride, a significant amount 

of cerium was observed being washed out of the column hindering the process. 

Therefore, the results of this study show that cerium chloride impregnation to typical 
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filter media is not feasible. Adding liquid cerium chloride to the water and then using 

sedimentation or filtration to separate the sludge formed should then be the choice. 

It is disappointing that cerium chloride cannot be impregnated to typical filter 

media because of its potential use in water treatment. As it was demonstrated in Chapter 

4, cerium chloride is a good coagulant for fluoride removal. Fluoride is present in many 

rural and economically depressed regions of Africa and India. If one could impregnate 

media with cerium chloride, then point of use technologies could be developed for use in 

such regions. 

 

 
 

5.4. Results of XRF Analysis and Oxide Distribution 

 
XRF analysis results of GAC impregnated with cerium chloride using various 

preparations are shown in Figure 27. The analyses identified cerium oxide, lanthanum 

oxide, and other oxides presented in the prepared media. Other researchers have 

identified rare-earth elements to form rare-earth oxides at temperature from 550ºC to 

635ºC (Lee & Rees, 1987; Hashimoto et al., 1997; Zhang et al., 2012). 
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Figure 27: XRF analyses for all GAC preparation and identification of metal oxides on impregnated GAC 

 

 

 
The analyses show that all media preparations resulted in the formation of some 

metal oxides However, in this study, only limited formation of cerium oxides, lanthanum 

oxides, and various other Ln-oxides, were found in GAC. One possible explanation is the 

uneven distribution of cerium oxides on the media. The significant flaw in the estimation 

of removal is the assumption of even distribution of cerium chloride in the cavities of 

media (e.g. GAC). Therefore, in all cases, the preparations did not work effectively for 

cerium chloride impregnation. 
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CHAPTER 6: CONCLUSIONS, IMPLICATIONS AND FUTURE WORK 

 

 

 
 

6.1. Conclusion 

 
The objectives of this research were to evaluate the effectiveness of cerium 

chloride on the removal of both fluoride and phosphate from wastewaters. Batch 

experiments were performed to investigate fluoride removal. While the research on 

fluoride focus on using coagulation/precipitation, the research on phosphate removal 

focus on impregnating media with cerium chloride for use in wastewater filters. 

The following conclusions can be draw from the results of this research: 

 
1. The CCD model achieved an R-Squared = 0.8615 and adjusted R-Squared = 

0.7368. The revised CCD model, where the non-significant coefficients were 

removed, estimated an R-Squared = 0.7884 and adjusted R-Squared = 0.7128. 

Based on the calculated responses of the CCD models, F-value are significantly 

greater than the F-critical. Furthermore, all P-values are less than P-critical 

(P<0.05); therefore, the model is statistically significant. The CCD models 

forecast fluoride removals that are lower than those obtained experimentally. One 

limitation of the CCD model is that the cerium chloride dosage used assumes the 

formation of cerium fluoride (CeF3) precipitate. It does not account for the 

formation of cerium hydroxide and cerium carbonate and the formation of cerium 

complexes that can promote fluoride removal by adsorption, rather than by 

precipitation. The optimal fluoride removal, based on the developed CCD model, 

was achieved at cerium doses of 12.50 mM and 25.0 mM and a pH of 4.75 to 
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5.00, regardless of the initial fluoride concentration. At lower pH (<2.00), the 

highest achievable fluoride removal is between 40% and 50%. 

2. The effect of pH and cerium dose on fluoride removal was evaluated. Highest 

fluoride removal was achieved at a pH of 4.75 and 6.50. Below the pH of 4.75, 

less than 80% removal was achieved. Furthermore, at a pH greater than 7, fluoride 

removal deteriorated significantly and was less than 60%. Higher fluoride 

removal was observed with a higher cerium dose (25.0 mM), and lower removals 

were found for at a cerium dose of 6.25 mM. 

3. For high fluoride concentrations (938 mg/L), 90% fluoride removal was achieved 

at a Ce/F molar ratio of 0.50. A 98% removal was achieved with molar ratio of 

0.80. For 98 mg/L fluoride concentration, 90% removal was achieved with a 

Ce/F molar ratio of 1.2; no additional removal was achieved with molar Ce/F 

ratio >1.2. Therefore, high concentrations of fluoride required less dosages of 

cerium chloride. 

4. Higher fluoride removals were achieved with the addition of sulfate and 

phosphate. The presence of nitrate showed no impact on t fluoride removal. The 

positive impact of sulfate and phosphate and lack of impact of nitrate on fluoride 

removal can likely be attributed to the formation of complexes of these ions with 

cerium. The formation of strong complexes of cerium (III)and sulfate and 

phosphate. However, cerium (III) forms weak complexes with nitrate have been 

documented. In addition, it has been documented that fluoride can absorb to the 

surface of oxides and hydroxides, including those formed by the addition of 

REEs, such as cerium chloride. 
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5. Fluoride removal, as investigated in this study can be attributed to two 

mechanisms: direct precipitation by the formation of cerium fluoride, and 

adsorption of fluoride ions onto the surfaces of cerium hydroxides or the 

formation of complexes with other ions.. The formation of various REE 

complexes have been investigated and reported in the literature including those of 

2+ + 

phosphate (e.g. LaH2PO4 , CePO4) and sulfate (e.g. LnSO4  ). 

 

6. The presence of carbonate alkalinities >1,000 mg/L negatively impacted fluoride 

removal. At higher alkalinities (>1,000 mg/L), a lower fluoride removal was 

observed. Cerium (III) can form precipitates and complexes (e.g. Ce2(CO3)3 (s), 

CeCO3
+
, and Ce(CO3)2

-
) with bicarbonates and carbonates.  The results show that 

fluoride removal is inversely proportional to the amount of alkalinity present. 

Therefore, fluoride removal is lower at high alkalinity, because cerium (III) is 

consumed to form cerium carbonates and its complexes. Therefore, water with 

high carbonate and hydroxide alkalinities are poor candidates for fluoride removal 

with cerium chloride, unless the pH of the water is lowered using strong acids. 

For an actual wastewater containing fluoride and high alkalinity, (100,000 as 

CaCO3), a significant amount of sludge is observed when cerium chloride is 

added. The sludge is the result of the precipitation of cerium hydroxide – Ce(OH)3 

and cerium carbonate (Ce2(CO3)3.No fluoride removal was observed for this water 

because cerium chloride addition resulted in the formation of precipitates, other 

than those of fluoride. 

7. The impregnation of various media types with cerium chloride was proven 

unsuccessful. Only a small number of bed volumes of contaminated water were 
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processed through beds of the media, before breakthrough occurred. The most 

reliable impregnation methods consisted of calcinations of GAC at 600
º
C. 

Treated GAC was able to sustain the processing of more bed volumes of 

contaminated water than the other media. X-ray diffraction of the treated media 

revealed that cerium oxide was formed by the treatment technique used. In 

addition, measurement of cerium in the effluents of the columns showed that 

cerium was being washed out from the media. Therefore, all preparation 

techniques used were ineffective in keeping cerium attached to the media. 

 

 
 

6.2. Implications of the Research Results to the Treatment of Industrial Waters 

Contaminated with Fluoride 

When using cerium chloride (i.e.Sorbx-100) for fluoride removal, the addition of 

sulfate and phosphate may be practiced to improve fluoride removal. This study 

suggested the formation of REE complexes that can aid fluoride removal. Researchers 

(Wedepohl, 1978; Wood, 1990; Haas et al., 1995; Cetiner & Xiong, 2008)have identified 

the formation of these complexes. With sulfate and phosphate, smaller amounts of cerium 

chloride can be added to achieve high removals of fluoride. Waters contaminated with 

fluoride and that have high alkalinity are challenging to treat by cerium chloride addition. 

Fluoride removal is inversely proportional to the amount of alkalinity present in water; 

cerium will react with alkalinity to form sludge before it will react with fluoride. 

Treatment of these waters would require a significant amount of acid to lower the pH to 

dischargeable levels. 
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6.3. Future Work 

 
Cerium is a very new coagulant that has only recently become available. The use 

of cerium as a water/wastewater coagulant is still in its infancy. Therefore, many 

interesting applications of cerium chloride are still to be discovered. There is much 

potential in REE-based coagulants, but additional research must be conducted including: 

1. Evaluate the mechanisms involved in fluoride removal in the presence of sulfate, 

phosphate, and carbonate by examining the sludge formed by X-ray diffraction. 

2. Investigate further the role of sulfate and phosphate on fluoride removal at 

different pH values. 

3. Evaluate the role of sulfate and phosphate in the enhancement of fluoride 

removal. 

4. Evaluate the impact of organics on coagulation process using cerium chloride 

 
5. In the investigations involving the role of sulfate, phosphate, and carbonate, 

identifies the amount of cerium used in the processes. 

6. Evaluate the appropriate cerium dose and molar ratio for the removal of high 

fluoride levels from water under extremely high alkalinity conditions. 
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